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M. Bileska

Abstract

This thesis investigates the physics performance, trigger efficiency, and Field
Programmable Gate Array (FPGA) implementation of machine learning (ML)-
based algorithms for Lorentz-boosted H → bb̄ tagging within the CMS Level-
1 Trigger (L1T) under Phase-1 conditions. The proposed algorithm, WOMBAT
(Wide Object ML Boosted Algorithm Trigger), comprises a high-performance Mas-
ter Model (W-MM) and a quantized, FPGA-synthesizable Apprentice Model (W-
AM), benchmarked against the standard Single Jet 180 and the custom rule-based
JEDI (Jet Event Deterministic Identifier) triggers.

All algorithms process calorimeter trigger primitive data to localize boosted
H → bb̄ jets. Outputs are post-processed minimally to yield real-valued (η, ϕ) jet
coordinates at trigger tower granularity.

Trigger rates are evaluated using 2023 CMS ZeroBias data (0.64 fb−1), with
efficiency assessed via a Monte Carlo sample of H → bb̄ offline reconstructed AK8
jets. W-MM achieves a 1 kHz rate at an offline jet pT threshold of 146.8 GeV, 40.6
GeV lower than Single Jet 180, while maintaining comparable signal efficiency.
W-AM reduces the threshold further to 140.4 GeV, with reduced efficiency due to
fixed-output constraints and limited multi-jet handling.

FPGA implementation targeting the Xilinx Virtex-7 XC7VX690T confirms that
W-AM meets resource constraints with a pre-place-and-route latency of 22 clock
cycles (137.5 ns). In contrast, JEDI requires excessive resource usage and a 56-
cycle latency, surpassing the 14-cycle L1T budget.

These results underscore trade-offs between physics performance and hard-
ware constraints: W-MM offers the highest tagging performance but exceeds cur-
rent FPGA capacity; W-AM is deployable with reduced efficiency; JEDI remains
deployable with moderate efficiency but increased latency. Originally developed
for Run-3 CMS L1T, WOMBAT serves as a proof-of-concept for Phase-2 triggers,
where hardware advances will enable online deployment of more sophisticated
ML-based L1T systems.

Keywords— CMS, Level-1 Trigger, WOMBAT, FPGA, machine learning, Higgs boson,
boosted jets, jet tagging, trigger efficiency, trigger rate, latency, resource utilization,

real-time, online trigger, Run 3, HL-LHC, embedded deterministic autoencoder, high-level
synthesis
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Chapter I: The Large Hadron Collider, CMS Experi-
ment, and Level-1 Trigger

1. Physics Goals Driving Trigger Development

As the operating conditions of hadron colliders become more extreme — charac-
terized by unprecedented event rates, pileup densities, and detector occupancies —
the task of real-time event selection becomes central to the pursuit of new physics.
In high-energy experiments, the trigger system serves as the earliest stage of online
event selection, employing low-latency, hardware-implemented algorithms that per-
form rapid reconstruction of detector signals. By suppressing dominant backgrounds,
trigger systems are designed to maintain sensitivity to signatures consistent with tar-
get processes, such as high transverse momentum (boosted) decays or rare topologies
indicative of physics beyond the Standard Model (BSM).

Designed to cope with the extreme data rates and event complexities at collider
experiments, trigger systems must operate under strict constraints on latency, band-
width, and hardware resources. This imposes a limit on the expressiveness of algo-
rithms that can be deployed in real-time. Traditionally, trigger logic has relied on
heuristic or rule-based approaches optimized for speed rather than flexibility. How-
ever, recent advances in machine learning (ML), combined with the increasing pro-
grammability of modern Field Programmable Gate Arrays (FPGAs), have opened new
avenues for implementing data-driven, high-performance decision-making within the
tight operational constraints of trigger systems.

At the Large Hadron Collider (LHC), the highest-energy particle accelerator cur-
rently in operation, one of the key targets for precision measurements and new physics
searches is the study of boosted Higgs bosons decaying to bottom quark-antiquark
pairs (H → bb̄). This decay channel dominates the Higgs boson’s branching ratios
and provides access to the bottom-quark Yukawa coupling — a fundamental param-
eter that determines the interaction strength between fermions and the Higgs field,
which underlies the mechanism of mass generation in the Standard Model. Further-
more, H → bb̄ decays constitute the most common final state in Higgs boson pair
production, which offers a direct probe of the Higgs self-coupling and the shape of the
Higgs potential. However, isolating these decays in a hadronic environment presents
a formidable challenge due to overwhelming quantum chromodynamics (QCD) multi-
jet backgrounds and the limited angular separation of decay products in the boosted
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regime. These challenges are expected to intensify significantly during the High-
Luminosity LHC (HL-LHC) era, where pileup and event rates will increase substan-
tially. At the same time, efficiently capturing Higgs boson pair production events
remains a key objective, with boosted topologies offering a powerful probe of this
process, making real-time identification of H → bb̄ decays a high-priority target for
triggering strategies.

This thesis presents the development and evaluation of WOMBAT (Wide Object
ML Boosted Algorithm Trigger), a machine learning-based trigger system designed
for the identification of boosted H → bb̄ decays at the Compact Muon Solenoid (CMS)
Level-1 Trigger (L1T). Intended to operate within the constraints of hardware-based
trigger systems, WOMBAT leverages calorimetric information to identify spatial and
kinematic features of Higgs decays in high-density hadronic environments. By apply-
ing custom deep learning techniques to low-latency data streams, WOMBAT aims to
enhance the sensitivity to boosted H → bb̄ signatures at the earliest stage of event
processing, ultimately enabling more efficient data collection for measurements of
Higgs couplings, di-Higgs production, and searches for new physics.

2. The Large Hadron Collider

Located at the European Organization for Nuclear Research (CERN) on the bor-
der of Switzerland and France, the Large Hadron Collider (LHC) is a 27-kilometer
circular particle collider that probes the fundamental nature of matter through high-
energy proton and heavy-ion collisions [1]. It was constructed in the underground
tunnels that previously housed the Large Electron-Positron (LEP) collider, which was
decommissioned in 2000. Since 2008, the LHC has been operational, currently accel-
erating proton bunches at a center-of-mass energy (

√
s) of 13.6 TeV (6.8 TeV per beam)

[2]. The LHC also facilitates CERN’s heavy-ion research programs by colliding nucle-
ons with an energy of 5.36 TeV per nucleon pair [3]. At four interaction points, super-
conducting magnets direct counter-rotating beams into collision within detectors such
as CMS (Compact Muon Solenoid), ATLAS (A Toroidal LHC Apparatus), LHCb (Large
Hadron Collider beauty), and ALICE (A Large Ion Collider Experiment), where, un-
der optimal conditions, data are continuously recorded over extended periods.

The primary source of the proton bunches is CERN’s Linear Accelerator 4 (Linac4)
[4], which accelerates negative Hydrogen ions, H−, up to a kinetic energy of 160 MeV.
As these ions traverse a series of radiofrequency (RF) cavities, they undergo a process
that strips their electrons, producing protons for injection into the Proton Synchrotron

7
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Booster (PSB) for further acceleration (H− → p(uud) + 2e−).
The PSB [5, 6], consists of four superimposed synchrotron rings that operate in

parallel. Within the PSB, the protons are accelerated to 2 GeV using combined-
function magnets and RF cavities. These cavities apply oscillating electromagnetic
fields to increase the protons’ energy, while dipole and quadrupole magnets ensure
their confinement within the accelerator’s circular trajectory. The PSB also serves
to improve beam quality by increasing brightness and reducing transverse emittance
before transferring the beam to the Proton Synchrotron (PS).

At the PS [7], a large 628-meter synchrotron, the protons undergo further acceler-
ation to an energy of 26 GeV. The PS employs conventional electromagnets to bend the
proton bunches along a circular path, while RF cavities provide energy boosts at each
turn. The PS plays a crucial role in beam manipulation, performing splitting, bunch
rotation, and other RF gymnastics to tailor the beam structure for subsequent stages.
It also acts as a crucial distribution hub, feeding various experiments and accelerator
systems, including the Antiproton Decelerator [8] and the ISOLDE [9] facility.

Following the PS, the protons enter the Super Proton Synchrotron (SPS) [10], an
accelerator with a circumference of 6.9 km, making it the second-largest machine in
the CERN accelerator complex. Within the SPS, the protons are accelerated from
26 GeV to 450 GeV. This acceleration is achieved using a combination of powerful
dipole magnets, which guide the beam through the synchrotron, and RF cavities that
provide energy gain. The SPS serves multiple purposes, acting as an injector for the
Large Hadron Collider (LHC) and supplying beams to fixed-target experiments such
as NA61/SHINE [11] and the North Area physics program [12].

Once the protons reach 450 GeV in the SPS, they are extracted and transferred
via the TI2 and TI8 beamlines to the LHC (see Figure 1.1). These transfer lines use
precise magnetic steering to guide the beams into the LHC ring, where they are then
captured and further accelerated to their final energy of 6.8 TeV per beam, leading to
the total center-of-mass collision energy of 13.6 TeV.

From the experiments around the LHC ring, ATLAS and CMS are general-purpose
detectors, designed to explore a broad range of high-energy physics phenomena, in-
cluding the properties of the Higgs boson, searches for potential new particles such
as supersymmetric states or dark matter candidates, and precision measurements of
Standard Model processes, including electroweak interactions and quantum chromo-
dynamics [14, 15]. Their complementary designs allow cross-verification of results,
enhancing the robustness of discoveries.

In contrast, LHCb is optimized for studying b-hadrons, particles containing bottom
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Figure 1.1: Schematic View of The CERN Accelerator Complex and Particle
Acceleration Paths [13]

(beauty) quarks, to investigate charge-parity (CP) violation, which plays a role in
understanding the observed dominance of matter over antimatter in the universe
[16]. By analyzing rare decays and mixing phenomena in heavy-flavor physics, LHCb
provides indirect tests of the Standard Model and potential hints of new physics.

Meanwhile, ALICE specializes in ultra-relativistic heavy-ion collisions, primarily
using lead nuclei, to recreate and study the quark-gluon plasma (QGP) — a decon-
fined state of matter that existed microseconds after the Big Bang [17]. By examining
QGP properties, ALICE provides insights into the strong interaction and the early
universe’s thermal evolution.

3. LHC Luminosity and Pileup

At each bunch crossing, multiple proton-proton (pp) collisions occur. The number
of collisions per bunch crossing is proportional to the instantaneous luminosity, L,
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and can be calculated through the following expression:

n =
L · σ
f

, (1)

where n is the number of collisions, L is the instantaneous luminosity measured in
units of cm−2 s−1, σ denotes the cross section of the event in units of cm2, and f is the
frequency of bunch crossings. The instantaneous luminosity, defined as the number
of potential collisions per unit area per second, can be expressed as:

L = γ
N2 frev nbunch

4π β∗ ϵn
, (2)

where N is the bunch population (particles per bunch), frev is the frequency of revo-
lution, γ is the relativistic gamma factor, nbunch is the number of proton bunches per
beam, β∗ is the evaluated beta function at collision point, and ϵn is the normalized
transverse beam emittance.

On average, there are:

naverage =
L · σpp

f · nbunch
, (3)

where σpp is the cross section for inelastic pp collisions (estimated to be 78.1± 2.9 mb
for collisions at center-of-mass energy of 13 TeV, with an approximation of 80 mb be-
ing a sufficient estimate for

√
s = 13.6 TeV collisions [18]), and naverage is the average

number of pp collisions per bunch crossing, also known as pileup. Figure 1.2 demon-
strates the pileup recorded by the CMS experiment, which has risen throughout the
LHC’s operational years. In 2024, the pileup reached a value of naverage ≈ 62, which is
expected to further increase to 140 − 200 after the High-Luminosity LHC (HL-LHC)
upgrade scheduled for 2030 [19].

As the average number of interactions per proton bunch crossing increases, the
occupancy of the detector’s readout channels grows accordingly, leading to significant
challenges in event reconstruction and data processing. The high-luminosity environ-
ment of future collider upgrades, such as the HL-LHC, will push detectors to operate
under extreme conditions, with hundreds of simultaneous proton-proton interactions
occurring in each bunch crossing. This high pileup environment introduces substan-
tial background noise, making it increasingly difficult to distinguish the signal of in-
terest from unwanted contributions arising from QCD processes. To cope with these
challenges, it is essential to develop advanced trigger systems capable of rapidly se-
lecting relevant events in real-time, preventing data overload and ensuring that the

10



M. Bileska Chapter I: The Large Hadron Collider, CMS Experiment, and Level-1 Trigger

Figure 1.2: Luminosity vs. Pileup as Recorded by the CMS Detector During the
2015-2024 Data-Taking Period With Cross Section Estimates for Inelastic PP

Collisions (Runs 2 and 3) [20]

most physics-rich collisions are retained for further analysis. Additionally, sophisti-
cated algorithms must be implemented to accurately reconstruct particle trajectories
and efficiently associate them with the correct primary interaction vertex, mitigat-
ing the effects of pileup and enhancing the precision of physics measurements. The
development of these intelligent data processing techniques is crucial to maximizing
the scientific potential of next-generation colliders, enabling discoveries in Higgs bo-
son physics, precision Standard Model tests, and potential new physics beyond the
current theoretical framework.

4. The CMS Detector

The Compact Muon Solenoid (CMS) detector is a multi-purpose apparatus de-
signed to study proton-proton and heavy-ion collisions at

√
s = 14 TeV (7 TeV per

beam, and 2.75 TeV per nucleon in heavy-ion collisions) [21]. It measures the prop-
erties of particle jets, leptons, photons, and missing transverse energy (MET), and
is capable of tracking and identifying muons, electrons, and hadrons. The design
luminosity of the experiment is 1034 cm−2 s−1 for pp collisions and 1027 cm−2 s−1 for
heavy-ion collisions.
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The CMS detector features many cylindrical detection layers that are arranged
concentrically around the beam axis [22]. Figure 1.3 illustrates a schematic repre-
sentation of particle trajectories for different species as they traverse the detector’s
subsystems.

At the interaction point, where proton-proton collisions occur, charged particles
first pass through the Silicon Tracker, a finely segmented system of silicon pixel and
strip detectors. The tracker provides precise spatial measurements of charged par-
ticle trajectories, allowing for momentum reconstruction based on their curvature in
the presence of a 3.8 T magnetic field.

Figure 1.3: Particle Interactions in a Transverse Slice of the CMS Detector [22]
Lines depict trajectories of muons (solid blue), electrons (red), charged and neutral hadrons
(solid and dashed green, respectively), and photons (blue dashed). Blue-highlighted muon

chambers indicate particle detection, while dark blue splashes in the ECAL and HCAL
represent energy deposits.

Beyond the tracker, particles enter the Electromagnetic Calorimeter (ECAL), which
is designed to measure the energy of electrons and photons with high precision. The
ECAL consists of lead tungstate (PbWO4) crystals that produce scintillation light
when traversed by high-energy particles. Due to the strong electromagnetic inter-
action, electrons and photons initiate electromagnetic showers within the ECAL and
deposit most, if not all, of their energy before coming to a stop.

Following the ECAL is the Hadron Calorimeter (HCAL), responsible for measur-
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ing the energy of strongly interacting particles such as protons, pions, and kaons.
The HCAL consists of alternating layers of dense absorber material (brass or steel)
and plastic scintillators, enabling the detection of hadronic showers through energy
deposition.

Unlike electrons and hadrons, muons interact minimally with both the ECAL and
HCAL, allowing them to penetrate these layers with minimal energy loss. This is
primarily because muons, being much heavier than electrons, lose significantly less
energy through bremsstrahlung radiation. Instead, they predominantly lose energy
through ionization, which results in a more gradual energy loss as they travel through
matter. Therefore, muons are subsequently detected in the Muon Chambers, which
are embedded within the iron yoke that surrounds the solenoid magnet. The yoke
serves as a return path for the magnetic field and provides additional shielding. The
muon system consists of gaseous detectors, including Drift Tubes (DTs), Cathode
Strip Chambers (CSCs), and Resistive Plate Chambers (RPCs), which enable precise
muon momentum measurement and trigger capabilities.

By combining data from all these subsystems, the CMS detector can accurately
reconstruct particle trajectories, identify different particle species, and measure their
properties with high precision. Additionally, it can infer the presence of non-interacting
particles, such as neutrinos, by calculating MET, which plays a crucial role in many
physics analyses, including searches for new particles.

4.1 Jet Tagging and Reconstruction

Accurate reconstruction of particle trajectories in the CMS detector is essential for
measuring momentum and inferring particle types based on signatures in various de-
tector components. Charged particles, such as electrons, muons, or charged hadrons,
experience a Lorentz force in the 3.8 T uniform magnetic field generated by the Su-
perconducting Solenoid [22]. This deflection can be used to determine the charge and
momentum of a particle based on its trajectory recorded within the Silicon Tracker.
As an example, Figure 1.3 shows the bending paths of a pion (π+) and a muon (µ+),
both appearing as concave-down arcs in the image due to their like charge. In con-
trast, the negatively charged electron (e−) follows a concave-up trajectory. Note that
the concavity is relative to the orientation of the figure and not an absolute physical
descriptor.

At the CMS detector, offline particle tagging begins with the Particle Flow (PF)
algorithm [23], which plays a central role in event reconstruction. Introduced in 2009
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and deployed in CMS physics analyses starting in 2010, the PF algorithm was ini-
tially validated using simulated Monte Carlo (MC) events and quickly became a stan-
dard reconstruction technique. Designed to fully exploit the combined granularity
and resolution of the tracking detectors, calorimeters, and muon systems, PF recon-
structs collision events by utilizing information from all subdetectors to generate a
comprehensive list of final-state particles, including photons, electrons, muons, and
hadrons. Once individual particles are identified using PF, hadronically decaying tau
(τ ) leptons and composite objects such as jets are reconstructed from the resulting
particle collection.

Isolated electrons and photons are primarily identified through the ECAL, where
they deposit their energy in distinct electromagnetic showers. These showers ex-
hibit characteristic spatial and energy profiles enabling precision measurements of
both the energy and position of incident particles. Electrons are further identified
by matching ECAL clusters with charged-particle tracks reconstructed in the inner
tracking detector, while photons, being neutral, are identified based solely on their
energy deposits and the absence of associated tracks.

Jets originating from b-quark hadronization pose a distinct identification chal-
lenge due to the presence of b-hadrons, which decay a few millimeters from the pri-
mary interaction point, resulting in displaced secondary vertices. The identification
of such b-jets, or b-tagging, employs algorithms such as DeepCSV and DeepJet [24],
which use high-resolution tracking information, processed through deep neural net-
works. This approach is especially critical in analyses targeting final states involv-
ing b-quarks, such as Higgs boson decays to bottom quark pairs, including boosted
topologies where collimated b-jets may be reconstructed as a single large-radius jet
and identified using substructure-based b-tagging techniques. Accurate identification
of b-jets is relevant due to the prevalence of bottom quarks in final states of Higgs bo-
son decays and various BSM scenarios, where enhanced couplings to third-generation
quarks are often predicted.

Muon identification relies on a dedicated system of muon chambers placed at the
outermost layers of the detector, beyond the calorimeters. Muons are highly pen-
etrating particles and interact minimally with both electromagnetic and hadronic
calorimeters. The muon chambers provide complementary tracking information by
recording the trajectories of these particles, particularly aiding in momentum mea-
surement through the curvature of their paths in the magnetic field. By combining
data from the inner tracking system and the muon chambers, the detector achieves
improved resolution and reliability in muon identification, efficiently distinguishing
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them from other particles and backgrounds.
Accurate particle tagging enables the identification of rare and complex physics

signatures within the vast number of collisions occurring at the CMS detector. How-
ever, with a nominal bunch crossing frequency of 40 MHz, corresponding to 40 million
proton-proton interactions per second and a 25 ns time separation between events
[25], the sheer volume of data generated across the tracking, calorimetry, and muon
detection systems is immense. Since only a small fraction of these collisions produce
physically significant events, and data storage is inherently limited, the CMS detec-
tor employs a sophisticated Trigger System designed to drastically reduce the data
acquisition rate. This system ensures that only events of potential scientific inter-
est are retained for further analysis, allowing efficient selection of the most relevant
interactions while discarding background and low-energy processes.

5. The CMS Trigger System

The high frequency of bunch crossings along with the comparatively large amount
of data (5 MB) per bunch crossing imposes strict constraints on the design and op-
eration of the CMS Trigger System. To efficiently manage event selection, the CMS
Trigger is structured as follows [26]:

• The Level-1 Trigger (L1T): A low-latency system implemented using custom
electronics, such as Application-Specific Integrated Circuits (ASICs) and Field-
Programmable Gate Arrays (FPGAs), which operate in real-time (online) to pro-
cess and filter initial collision data. The L1T receives energy and position mea-
surements, known as trigger primitives (TPs), from the calorimeters and muon
detectors. Using firmware, the L1T subsystems reconstruct jets, photons, elec-
trons, hadronically decaying τ leptons, and muons while also computing their
energy sums. Notably, due to limited tracking information at this stage during
Phase-1, the L1T cannot fully distinguish between photons and electrons, clas-
sifying both as electromagnetic objects. This processed information is then sent
to the L1T Global Trigger, which uses a configurable set of selection algorithms,
called seeds, collectively known as the L1T Menu, to decide whether an event
should be retained for further analysis. If an event is labeled of interest, the data
is passed to the High-Level Trigger (HLT) for additional processing. The L1T re-
duces the input rate from 40 MHz to 100 kHz (Run 2) and up to 110 kHz (Run 3),
outputting a decision within 3.8 µs after a collision occurs.1

1The LHC operates in multi-year periods known as Runs. Run 1 took place from 2009 to 2013,
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• The High-Level Trigger (HLT): Executes advanced algorithms on a dedicated
processor farm to process events accepted by the L1T. It performs full event re-
construction using data from the Tracker, ECAL, HCAL, and Muon Detectors,
applying refined selection criteria to further reduce the event rate for offline
storage and analysis. The HLT runs on commercial Central Processing Units
(CPUs) and Graphics Processing Units (GPUs), employing heterogeneous algo-
rithms that can execute efficiently on both architectures. The algorithms at
the HLT are designed to run faster than those used in offline reconstruction,
prioritizing speed while maintaining sufficient precision. Rather than always
running full event reconstruction, the HLT applies selected fast reconstruction
algorithms in multiple steps. Each step includes a filter, and if an event fails to
pass a filter, processing is terminated early to save resources. From the input
stream of 110 kHz, the HLT reduces it down to about 1.75 kHz (Run 3), retaining
only 4.55% of the events selected by the L1T.2

From the terabytes of data generated each second in the CMS experiment, only
about 0.01% is stored for further analysis. To handle the immense data volume, the
Data Acquisition (DAQ) system regulates data transfer between sub-detectors and
the trigger system, provides buffering and temporary storage, and ensures the effi-
cient flow of data [28]. It plays a crucial role in processing and transferring selected
events data to permanent storage. Integrated with the DAQ is the Data Quality Mon-
itoring (DQM) system [29]. In online mode, the DQM obtains a small subset of the
detector data within seconds to minutes after collisions. This data is partially re-
constructed in real time to monitor detector health, identify performance anomalies,
and ensure stable data-taking conditions. For offline analysis, a larger subset of the
data, referred to as the Express Stream, is reconstructed with an approximate 1-hour
latency, allowing for early feedback on data quality and detector calibrations. The
complete dataset then undergoes Prompt Reconstruction, which typically begins 48

hours after data collection, although actual latency may vary depending on opera-
tional conditions. Beyond this, further reprocessing, such as Delayed Reconstruction
or Re-Reconstruction, may take place weeks or months later, incorporating improved
calibrations, updated algorithms, or revised reconstruction parameters.

followed by a two-year shutdown. Run 2 lasted from 2015 to 2018, with another long shutdown (LS2)
from 2019 to 2022 for upgrades. Run 3 began in 2022 and is expected to continue until mid-2026. Each
Run features improvements in collision energy, luminosity, and detector performance [27].

2The value of 1.75 kHz was reported in 2023 by Ref. [26]. Additionally, the parking rate, which
includes events stored for later reconstruction when computing resources become available, was higher,
around 2.5-3 kHz.
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Figure 1.4: Dataflow of the L1T During Following Phase-1 Upgrades [30]

5.1 The Level-1 Trigger

The initial decision of whether an event contains information that can lead to
new physical discoveries is carried out by the Level-1 Trigger (L1T). Due to strict la-
tency and resource constraints, highly optimized algorithms are implemented on cus-
tom electronics, primarily using FPGA devices in the L1T, with ASICs used in front-
end detector electronics for signal digitization and preprocessing. These algorithms
range from basic arithmetic operations to more advanced techniques, including pat-
tern recognition and ML methods. The L1T processes calorimetry and muon detector
data in real-time, outputting a trigger decision with a latency of approximately 3.8µs
following a collision. The diagram presented in Figure 1.4 illustrates the processing
sequence and decision-making logic of the L1T system during Phase-1 of the CMS
experiment, where trigger decisions are made based on reconstructed physics objects
derived from calorimeter and muon detector data.

The Level-1 Calorimeter Trigger begins with the Trigger Primitive Generator
(TPG) circuits in the ECAL, HCAL, and Forward Hadronic Calorimeter (HF), which
process detector signals to compute energy sums. These sums are calculated within
each Trigger Tower (TT), the fundamental unit of calorimeter granularity that repre-
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sents small, discrete regions of the detector. In the trigger’s original design, TPs were
processed by the Regional Calorimeter Trigger (RCT) which identified electron and
photon candidates, determined whether they were isolated or part of a jet, and com-
puted regional energy sums [31]. The RCT further identified "quiet regions", or areas
with minimal calorimetric activity, which helped in distinguishing isolated muons
from those produced in dense hadronic environments. This information was trans-
mitted to the Global Muon Trigger (GMT), which applied muon isolation cuts by eval-
uating the surrounding calorimetric energy and tracking activity. Concurrently, the
RCT forwarded processed calorimetric information to the Global Calorimeter Trigger
(GCT), where calculations to determine the total (ET ) and missing (Emiss

T ) transverse
energy were performed.

Following Run 1 of the LHC, the L1 Calorimeter Trigger underwent major up-
grades that increased the granularity of the HCAL and ECAL detectors, enhanced the
processing architecture, and improved data throughput. As part of this upgrade, the
GCT and RCT were decommissioned and functionally replaced by a time-multiplexed,
two-layer processing system: Layer-1, implemented using Calorimeter Trigger Pro-
cessor cards (CTP7), performs regional data formatting and pre-processing; Layer-2,
based on Master Processor cards (MP7), executes full-event calorimetric object re-
construction and computes global energy sums. These changes are summarized as
follows [32, 33, 34]:

• Upgrade of data transfer links, allowing for a tenfold increase in speed (to 10

Gigabits per second)

• Upgrade to latest generation FPGAs and Xilinx Virtex 7, which utilize VIVADO
as a High-Level Synthesis (HLS) software

• Replacement of legacy Versa Module Eurocard (VME)-based electronics with the
more compact and scalable MicroTCA architecture

These upgrades facilitated advanced algorithmic capabilities, including improved
jet clustering, refined selection criteria, and more precise energy and spatial resolu-
tion. Additionally, the hardware architecture significantly reduced the overall trig-
ger latency, allowing quicker trigger decisions and lower dead-time. The adoption of
FPGA-based processing allowed for the implementation of higher-complexity selec-
tion algorithms, such as ML-based trigger systems.

The calorimeter detector is segmented into 72 tower regions in the azimuthal angle
(ϕ), each covering 5◦. In Layer 1 of the Calorimeter Trigger (see Figure 1.5), these
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tower regions are grouped and processed by 18 CTP7 cards. Each CTP7 card spans
the entire pseudorapidity (η) space and handles data from a distinct 20◦ segment in
ϕ, collectively covering the full 360◦ range.3

The processed data from the CTP7 cards is then transmitted to the MP7 cards in
Calorimeter Trigger Layer 2. The MP7 contain fully pipelined calorimeter algorithms
that identify particle candidates and compute global energy sums. Each card takes in
72 input links and has access to full TT granularity. Selected trigger candidates are
then sent to an MP7 demultiplexer board (Demux), which formats the information
appropriately for the Global Trigger (GT), also referred to as the microGT (µGT).

Figure 1.5: Schematic View of CTP7 and MP7 Cards Constituting the L1
Calorimeter Trigger Following Phase-1 Upgrades [35]

The Level-1 Muon Trigger system has a different operating logic than the Calorime-
ter Trigger. In the legacy system, a major component of track reconstruction in the
RPC subsystem was the Pattern Comparator Trigger (PACT), which performed fast
pattern matching by comparing RPC strip hit patterns against predefined templates
to identify muon candidates and assign them approximate positions in η-ϕ space [31].

3For a schematic illustration of the η-ϕ coordinate system see Appendix C.
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In this architecture, each of the three muon subdetectors (DT, CSC, and RPC) inde-
pendently generated trigger primitives and reconstructed standalone muon tracks,
which were then forwarded to the GMT for merging and selection. In contrast, the
Phase-1 upgrade introduced a unified system in which information from all muon
subdetectors is combined early in the trigger chain. Tracks are reconstructed within
three distinct pseudorapidity regions using dedicated processors: the Barrel Muon
Track Finder (BMTF) for the barrel region, the Overlap Muon Track Finder (OMTF)
for the transition region between barrel and endcap, and the Endcap Muon Track
Finder (EMTF) for the endcap region [35].

Each of the three muon track finders receives input from the relevant muon sub-
systems based on their detector region: the BMTF uses DT and RPC data, the OMTF
combines information from all three systems in the transition region, and the EMTF
reconstructs muons using CSC and RPC data. Each track finder is segmented in ϕ

to process data in parallel, with the BMTF divided into twelve 30◦ sectors, and the
OMTF and EMTF each divided into twelve 60◦ sectors spanning the two endcaps
[35]. Within each sector, trigger primitives are used to reconstruct muon candidates,
assign charge, estimate transverse momentum based on track curvature in the mag-
netic fringe field, and assign a quality score. Up to 36 muon candidates per processor
are transmitted to the upgraded GMT, referred to as microGMT (µGMT), which re-
places the legacy GMT. The µGMT removes duplicates across regional boundaries,
sorts candidates based on a combination of pT and quality, and sends the top-ranked
muons to the µGT for the final L1T decision.

The data processed and selected by the upgraded calorimeter and muon trigger
subsystems are sent to the µGT, which applies predefined logical algorithms to pro-
duce the final L1T decision. Upon issuing an L1 Accept (L1A), the µGT signals the
Trigger Control System (TCS) to synchronize subsystem timing and initiate the DAQ
readout process [31].

5.2 The High Level Trigger

The High-Level Trigger (HLT) is the second stage of the CMS trigger system, ana-
lyzing event data from all CMS sub-detectors with information content comparable to
offline reconstruction, though some algorithmic steps are simplified [28]. It is built us-
ing commercial CPUs and GPUs. The data analysis algorithms can execute on either
type of processor, with a preference for GPUs when available. With relaxed latency
constraints, the software running on the HLT resembles the offline CMS analysis

20



M. Bileska Chapter I: The Large Hadron Collider, CMS Experiment, and Level-1 Trigger

tools which provide a greater degree of accuracy when performing calculations.
The HLT utilizes the Particle Flow algorithm to perform real-time reconstruction

of physics objects with high precision. Introduced into the HLT in 2011, PF was ini-
tially applied to τ lepton identification using combined tracking and calorimetric in-
formation. In 2012, its role was expanded to include full jet reconstruction and the
calculation of missing transverse energy (Emiss

T ). Within the HLT, PF enables the
identification of individual particles such as electrons, muons, photons, and hadrons
by integrating information from the tracker, calorimeters, and muon systems. This
detailed event interpretation enables the HLT to reconstruct composite physics ob-
jects with better resolution than the L1T and to apply selection criteria that are
broadly aligned with offline analysis strategies while operating within the real-time
constraints of the online DAQ system.

The HLT comprises numerous software modules, each designed to execute well-
defined tasks, which are systematically organized into multiple trigger paths [36].
Each HLT trigger is specifically optimized to process a distinct category of physics
objects and event information, ensuring an efficient and targeted event selection pro-
cess. To initiate the execution of an HLT trigger path, it must be seeded by at least
one L1T bit. This requirement enables the initial filter module within the HLT to
identify and extract the relevant event data by referencing the L1 objects encoded in
the corresponding L1 seed. Consequently, the HLT leverages L1 trigger information
to streamline event selection, reducing computational overhead while maintaining
high selection efficiency.

6. High Luminosity LHC and CMS Phase-2 Upgrades

To expand the physics reach of the LHC experiments, in 2030, the collider is sched-
uled to launch with a substantial upgrade. Currently, the LHC achieves a nominal
luminosity of approximately 2× 1034 cm−2 s−1 and an integrated luminosity of 65 fb−1

[37]. Following the High Luminosity LHC (HL-LHC) upgrade, these values are ex-
pected to increase to 7.5 × 1034 cm−2 s−1 for the peak and 4000 fb−1 for the integrated
luminosity (at least 250 fb−1 per year) [37]. As a result, the average pileup is expected
to increase from approximately 60 to about 200. This change impacts the experiments’
ability to measure, select, and store data given the higher density of collisions per unit
time.

Consequently, the CMS detector is undergoing significant Phase-2 upgrades to
increase data granularity and improve triggering systems for efficiency and pileup
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mitigation. These upgrades target key subsystems, including tracking, calorimetry,
muon detection, and triggering systems, ensuring the experiment remains sensitive
to rare physics processes, precision measurements, and BSM searches.

The Phase-2 upgrades introduce:

• A redesigned tracking system with enhanced granularity and real-time momen-
tum discrimination.

• The High Granularity Endcap Calorimeter (HGCAL) to replace the existing end-
cap calorimeters, providing improved energy resolution and radiation hardness.

• Enhancements to the muon detection system, expanding coverage and improv-
ing track resolution in the forward regions.

• A new L1T architecture, incorporating more computationally expensive ML al-
gorithms and increased latency to accommodate the higher event rates.

These advancements will enable CMS to cope with the extreme data rates and
complexity of collisions at the HL-LHC while preserving and enhancing its ability to
efficiently reconstruct and analyze events.

6.1 Upgrades to the Tracking and Calorimetry Systems

The upgraded Silicon Tracker will feature a highly granular design with 25 times
the output channels of its Phase-1 predecessor, ensuring improved performance in
high-pileup conditions [38]. Additionally, in this configuration, the Tracker Endcap
Pixel (TEPX) and the Tracker Barrel 2 Strip (TB2S) detectors will serve as real-time
luminometers.

In the calorimetry systems, the front-end (FE) electronics will be replaced. The up-
grade is meant to achieve 30 ps time resolution for electrons and photons of 30 GeV at
a rate of 40 MHz [38]. Another key implementation is the Very Front-End electronics
(VFE), which are meant to resolve and filter out anomalous signals, that result from
direct particle impacts on the Avalanche Photodiodes (APDs). Furthermore, to miti-
gate the aging of the detector’s electronics, the operating temperature for the APDs
will be lowered from 18 ◦C to 9 ◦C.

To achieve system harmonization and improve efficiency the hadron barrel calorime-
ter’s back end (BE) is set to adopt Advanced Telecommunications Computing Archi-
tecture (ATCA) boards [38]. These ATCA boards will not only facilitate data read-
out and trigger primitive generation but also manage clock distribution to FE com-
ponents. This unified approach to using ATCA boards across different subsystems
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ensures a streamlined and cohesive data acquisition and processing framework, en-
hancing both reliability and maintainability.

During Phase-2, the HCAL and ECAL endcaps are undergoing a major upgrade,
replacing the existing systems with the High Granularity Calorimeter (HGCAL). The
HGCAL is designed to operate in the high pileup environment of the LHC, aiming
to enhance precision in particle flow reconstruction, improving sensitivity for vector
boson fusion and scattering, allowing more precise jet substructure reconstruction,
and extending the reach for long-lived particle searches [38]. The system integrates
6 million silicon sensor channels, covering 620 m2 near the interaction point, and
250, 000 scintillator tiles read out by silicon photomultipliers (SiPMs) across 370 m2

in lower fluence hadronic regions. These components work together to ensure high-
resolution detection and robustness against radiation damage, facilitated by a carbon
dioxide cooling system maintaining temperatures at −30 ◦C.

The High Granularity Calorimeter Read-Out Chip (HGCROC) used in the detec-
tion modules will feature a dynamic range to read out signals originating from high-
energy photons, as well as minimum ionizing particles (MIPs) [38]. The lower energy
signals will be digitized using a 10-bit Analog-to-Digital Converter (ADC), whereas
the higher energy signals will be reconstructed using the time over threshold (ToT)
method. Both Online and Offline information processing will use ML-assisted pattern
recognition algorithms to achieve jet clustering and particle reconstruction.

6.2 Muon System Upgrade

The muon system will undergo upgrades on the DT, CSC, and RPC detectors which
will be enhanced with more efficient electronics to increase their performance and
cope with the 10-fold increase in muon production rates [38]. In the high-background,
high-rate regions new detectors will be installed intended to extend the geometric
range from 2.4 to 2.8 in |η|, enhance tracking, and allow for a bending angle measure-
ment at the trigger level.

6.3 Level-1 Trigger Phase-2 Upgrades

To meet the demands of the HL-LHC, where up to 200 simultaneous proton-proton
interactions per bunch crossing are expected, the CMS L1T system will undergo a
substantial Phase-2 upgrade involving major improvements to both hardware and
trigger algorithms [39]. The upgraded L1 Trigger will feature extended latency and
bandwidth, enabling the integration of information from high-granularity sub-detectors,
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such as the new tracking system and the high-granularity endcap calorimeter, di-
rectly into the trigger decision. A key innovation is the introduction of a correla-
tor layer, which combines inputs from multiple subsystems to reconstruct complex
physics objects with improved resolution and selectivity. These enhancements are es-
sential not only to maintain efficiency under HL-LHC conditions but also to improve
the purity and precision of triggered events, ensuring the system remains sensitive
to rare and high-value physics processes. Additionally, the planned integration of
tracking information at the L1 during Phase-2 will enable real-time reconstruction
of charged particle trajectories, providing precise spatial and momentum information
for efficient pileup suppression and improved object identification. This functional-
ity will be implemented through the Track Trigger, a key component of the Phase-2
architecture. The Phase-2 input to the L1 Trigger can be summarized as follows [39]:

• Tracker: Data will be included from the Outer Tracker at a rate of 40 MHz.
This allows for local pT measurements to be performed using FE electronics. In
such a way, the read-out rate of soft (low transverse momentum) interactions can
be reduced 10-fold through selection on the local pT . Studies have demonstrated
that 97% of particles created in pp collisions at 14 TeV have pT < 2 GeV, making
soft interactions a significant portion of the measured processes [40]. It is ex-
pected for approximately 15, 000 stubs per bunch crossing to be sent to the Track
Finder (TF) TPG, which will reconstruct the trajectories with minimal latency
of 5 µs, which includes the transmission time from the detector (1 µs). A subset
of 200 tracks will be sent to the L1 Trigger, which will use 100 bits per track
to encode the parameters with no degradation in performance. This increased
precision and efficiency in TP input will enhance the L1 Trigger’s accuracy and
performance.

• Electromagnetic Barrel Calorimeter: For Phase-2, the ECAL barrel trigger
primitive generator (EB TPG) will be relocated from the on-detector electron-
ics to the back-end system, where it will receive crystal-level data directly from
the detector. The primary goal for the EB TPG upgrade is to enable input data
calibration and apply digital filtering to extract precise energy and timing in-
formation. The data granularity will increase from one TT to a 5 × 5 array of
crystals per tower

• Hadron Barrel and Forward Calorimeters: The Phase-2 upgrade of the
CMS Hadron Barrel (HB) and Forward (HF) calorimeters aims to enhance the
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back-end electronics and partially replace front layer scintillator tiles if required
due to radiation damage anticipated during the HL-LHC. The upgrade main-
tains the current readout channel count, transverse segmentation, and longitu-
dinal readout depths established after the Phase-1 upgrade. The HB TPG will
utilize the same hardware as the ECAL Barrel to streamline development and
operational resources. Signals from four depth segments per TT will be sampled
at 40 MHz, corrected for pedestal, gain, and response, and then summed, with
peak detection algorithms applied. The HF detector will retain its Phase-1 elec-
tronics but will be supplemented by reusing Phase-1 HB and Hadron Endcap
(HE) back-end cards to meet the increased L1A rate demands. Both HB and
HF TPGs will feature advanced encoding and signal suppression algorithms to
improve calibration, lepton isolation, MIP identification, and overall energy re-
construction.

• High Granularity Endcap Calorimeter: The HGCAL will feature a new high
granularity sampling design, utilizing both silicon and scintillator sensors. The
calorimeter will have 52 sensitive layers per endcap, with 28 in the electromag-
netic section and 24 in the hadronic section, with only half of the electromagnetic
section layers contributing data to the L1 Trigger. The calorimetry TP data will
be sums of individual channels, referred to as trigger cells, implemented in both
the silicon and scintillator regions. These values form tower maps of ET cover-
ing any η − ϕ grid. The Endcap Calorimeter Trigger (ECT) TPG processes this
data in two stages: first, by forming two-dimensional clusters within each layer
from trigger cells and summing tower data to form a single η − ϕ grid, and then
by combining all 2D clusters in depth to form 3D clusters. The tower maps and
3D clusters from the ECT TPs will be input to the L1 Trigger during Phase-2.

• Muon Barrel: The barrel muon system will replace the existing DT and RPC
TPGs to enhance efficiency, spatial resolution, and timing precision. The trigger
primitive generation will be managed by 84 processor boards, similar to those
used for barrel muon track-finding, handling data transmission rates of 30.7 Tb
s−1 per sector from the DT system and 0.3 Tb s−1 from the RPC system via
10 Gb s−1 links. Studies on DT stub identification algorithms suggest possible
data formats that include precise hit positions to improve track-finding accuracy.
Independent paths for DT and RPC primitives will reduce sensitivity to detector
issues while combining both sources is expected to optimize performance.
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• Muon Endcap: In the Muon Endcap detector, the CSC TPG electronics will be
upgraded, maintaining the Phase-1 data format but with improved stub recon-
struction algorithms to address high pileup inefficiencies. These improvements
include better ghost track cancellation, reduced pre-trigger deadtime, optimized
pattern recognition, and enhanced timing, with data transmitted via 588 optical
links, each operating at 3.2 Gb s−1. The RPC detectors will retain their data
format with an upgrade to faster link speeds. In contrast, the new iRPC detec-
tors will have no η segmentation, but will extrapolate the position in η through
two precision timing measurements. The Gas Electron Multiplier (GEM) de-
tectors will provide L1 Trigger information through reconstructed hit clusters
and integrated GEM-CSC track stubs, enhancing local reconstruction efficiency,
particularly in regions prone to CSC aging. GEM TPs will be transmitted via
252 links at 10 Gb s−1, with integrated stubs boosting efficiency by up to 30% in
specific areas. For the GEM ME0 (Muon Endcap station 0), multi-layer stubs
will be reconstructed on-detector to minimize link requirements.

Most of the aforementioned upgrades aim to increase the data quality received by
the L1T, with some pre-selection being done at detection level. The higher granularity,
precision, and transfer speed of the TP data is expected to improve the performance
of the L1T which is intended to employ complex jet clustering and tagging algorithms
that are aided by machine learning programs.

Due to the increased pileup and information availability, the latency of the L1T,
which is the time available to produce an L1A signal following a collision, will be
increased from 3.8 µs in Phase-1 to 12.5 µs in Phase-2, with a maximum rate of 750
kHz [39]. The high-level view of the planned Phase-2 L1 Trigger setup is depicted in
Figure 1.6, which highlights data flow from various subdetectors into the Correlator
Trigger, which feeds into the GT for L1A decision processing. Solid lines indicate es-
tablished data paths, while additional links under investigation (marked with green
and yellow stars) include potential direct connections from upstream systems to the
Track Finder (TF) and Global Trigger (GT).

A significant change from the Phase-1 setup is the inclusion of the Correlator
Trigger (CT), which is necessitated by the introduction of the Track Trigger. The
CT performs event reconstruction by combining information from the central tracker,
calorimeters, and muon systems [39]. The online selectivity of this layer is designed
to approach the performance benchmarks of offline reconstruction in the HLT. Unlike
the setup used during Phase-1 of the experiment, Phase-2 will enable tracking infor-
mation to be available at the L1T stage. Reconstruction will be performed using four
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Figure 1.6: High-Level Diagram of the Phase-2 L1 Trigger Showing Arrows for
Established Paths and Direct Links Under Investigation [39]

dataflow paths that utilize the upgraded sub-detector components: Tracking Trigger
path (initiated from TRK in Figure 1.6), Calorimeter Trigger path (initiated from EC,
EB, HB, and HF in Figure 1.6), Muon Trigger path (initiated from DT, RPC, CSC,
and GEM in Figure 1.6), and Particle-Flow Trigger path (embedded in two layers in
the CT). All paths feed into the CT, which then transmits them to the Global Trig-
ger. With minimal latency, the GT outputs the L1A decision to the Trigger Control
and Distribution System (TCDS), which then initiates the DAQ readout chain. While
each path contributes to event reconstruction at L1, some subsystems also provide
standalone trigger objects with limited correlation to other detectors. These objects
may have reduced resolution and higher fake rates but can improve trigger efficiency
or aid in commissioning and validation.
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Chapter II: Boosted Jets, Higgs Boson Decays, and
Di-Higgs Production

1. The Standard Model

The Standard Model (SM) of Particle Physics provides a theoretical framework
that describes all known particles and their interactions, with the exclusion of grav-
ity. It is considered a gauge theory because its fundamental interactions arise from re-
quiring local gauge invariance under specific symmetry transformations. The theory
is built on the gauge group SU(3)C×SU(2)L×U(1)Y, which reduces to SU(3)C×U(1)EM

after spontaneous symmetry breaking via the Higgs mechanism. In this notation, L
denotes the left-handed nature of weak isospin, while Y represents the weak hyper-
charge. Mathematically, this means that the Lagrangian remains invariant under
local transformations of these groups, requiring the introduction of gauge bosons
(gluons, W/Z bosons, and the photon) as force carriers. The Higgs field, which will
be further discussed in Chapter II, Section 1.1, plays a crucial role in electroweak
symmetry breaking by acquiring a vacuum expectation value, thereby giving mass to
the W± and Z bosons, while leaving the photon massless.

As shown in Figure 2.1, there are two (major) classes of particles [41]:

• Fermions: Fundamental particles that have half-integer spin. In the SM, all
fermions except neutrinos acquire mass through the Higgs mechanism. The
dynamics of the 12 fundamental fermions is governed by the Dirac equation
((iγµ∂µ−m)Ψ(x) = 0), though neutrino masses may require an extension such as
the Majorana formalism [42]. Fermions follow Fermi-Dirac statistics and thus
obey the Pauli exclusion principle.

• Bosons: Force-carrying particles that have integer spin. The vector bo-sons,
which have spin-1, mediate three of the four fundamental forces: the Strong
Nuclear Force (gluon), the Weak Nuclear Force (W and Z bosons), and the Elec-
tromagnetic force (photon). Gravity is not included in the Standard Model but
is hypothesized to be mediated by the graviton (spin-2). The Higgs particle is a
scalar boson, having spin-0.

In quantum chromodynamics (QCD), the strong nuclear force is given as an in-
teraction between colored quarks. The symmetry group for gauge transformations in
the case of QCD is given by SU(3)C, where C denotes color. The gauge boson for the
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Figure 2.1: Standard Model of Particle Physics
The Standard Model diagram depicting the bosons (force carrying particles) and the three

generations of matter fermions. Possible interactions between species are highlighted, with
the mass, charge, and spin shown. Each fermion has an antimatter counterpart which is

omitted in this diagram.

strong interaction, the gluon, is massless and does not carry hypercharge. Addition-
ally, electroweak interactions are not affected by quark color changes. This implies
that SU(3)C transformations commute with U(1)Y and SU(2)L, making the Standard
Model Lagrangian invariant under SU(3)C × SU(2)L × U(1)Y transformations. How-
ever, gauge invariance forbids explicit mass terms for gauge bosons. In the SM, spon-
taneous symmetry breaking via the Higgs mechanism allows electroweak bosons and
fermions to acquire mass while preserving gauge invariance.

1.1 The Higgs Mechanism

For massive particles to exist in the Standard Model, the physical vacuum must
break some of the gauge symmetries present in the SM Lagrangian [43]. Specifically,
the electroweak symmetry SU(2)L × U(1)Y is spontaneously broken to the electro-
magnetic subgroup U(1)EM, which corresponds to the unbroken gauge symmetry of
the vacuum [44].
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The central idea of the Higgs mechanism is the existence of a scalar field perme-
ating all of space. This would entail a non-zero vacuum expectation value (VEV). The
Higgs field causes a symmetry breakdown from SU(2)L × U(1)Y to U(1)EM, which in-
duces mass by modifying the vacuum structure. Additionally, this accurately models
the mass ratios of the Z and W± bosons in terms of the Weinberg angle, while adding
an additional particle degree of freedom.

Due to the spontaneous symmetry breaking, the Higgs field is required to be
charged under both SU(2)L and U(1)Y [43]. Given that the smallest SU(2)L multiplet
is the doublet, this can be taken to be the minimal choice for a Higgs field description:

Φ(x) =

ϕ+(x)

ϕ0(x)

 , (4)

for:
ϕ+(x) =

1√
2

(
ϕ+
1 (x) + iϕ+

2 (x)
)
, (5)

ϕ0(x) =
1√
2

(
ϕ0
1(x) + iϕ0

2(x)
)
, (6)

where ϕ+
1 , ϕ

+
2 , ϕ

0
1, and ϕ0

2 are real and constitute the four degrees of freedom in the
Higgs field. The kinetic energy (T ) of this field can be expressed as:

T (Φ†,Φ) = (DµΦ)
†(DµΦ), (7)

where Dµ is the SU(2)L × U(1)Y gauge-covariant derivative expressed as:

Dµ =
(
∂µ + ig′Y Bµ − igW a

µT
a
)

(8)

where:

• ∂µ is the kinetic term,

• ig′Y Bµ is contributed by the abelian U(1)Y symmetry with g′ being the coupling
constant for the interactions under the symmetry, Y is the hypercharge of the
field, and Bµ is the gauge field associated with the U(1)Y group,

• and −igW a
µT

a is contributed by the SU(2)L symmetry, where g is the coupling
constant, W a

µ (a = 1, 2, 3) are the gauge fields associated with the SU(2)L group,
and T a are the Pauli matrices multiplied by one half.
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Similarly, the potential energy (V ) of the Φ field can be expressed as:

V (Φ†Φ) = −µ2Φ†Φ + λ(Φ†Φ)2, µ2 > 0, λ > 0, (9)

where λ is the coupling strength of the four-point Higgs interaction and µ is the mass
parameter [43].

Based on the equation above, the minimal value for the potential energy does not
occur when Φ = 0, but rather at a finite value. This would imply a non-zero VEV,
evaluated to be vev = ⟨Ψ⟩ = Ψmin, with Ψmin expressed as:

Ψmin =
1√
2

0
ν

 , where ν =

√
µ2

λ
. (10)

The spontaneous symmetry breaking can be easily seen due to the fact that the
ground states of the physical vacuum given by SU(2)L × U(1)Y gauge transforma-
tions of Φmin are not equal to it [43]. This, however, still implies that the Lagrangian
symmetries are intact and it is the dynamical selection of the vacuum from the self-
interacting potential in Equation 9 that has reduced the physical vacuum’s symme-
tries.

With respect to Φmin, excitations of the field can be parameterized as:

Φ(x) =
1√
2
eiξ(x)×τ

 0

ν +H(x)

 , (11)

where ξ(x) are excitations of Φmin along the potential minimum, τ are the Pauli matri-
ces, and H(x) is an excitation in the radial direction that corresponds to the prediction
of a free particle state [43]. Based on this, an expansion of V (Φ) with respect to Φmin

gives:

V (H) = −1

4
µ2ν2 + µ2H2 + λν2H3 +

1

4
λH4. (12)

Therefore, the predicted particle, the Higgs boson, should have a mass of mH =√
2µ2 =

√
2λν.

From Equation 7 the mass of the W boson can be derived:

(DµΦ)
†(DµΦ) =

1

4
g2W i

µW
jµΦ†τiτjΦ + ..., (13)

where summation over indices is implied. For i = j, τ 2 = 1, therefore the term
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becomes:
g2ν2

8

(
(W−

µ )†W−µ + (W+
µ )†W±µ

)
, (14)

using the fact that charged W boson states are given by W±
µ = 2−

1
2 (W 1

µ ∓ iW 2
µ) [43].

This term in the Lagrangian corresponds to a W boson particle with mass MW+ =

MW− = gν
2

. This is simply a coupling constant multiplying the VEV term, ν, which is
indicative of the Higgs mechanism. Similarly, by considering the coupling of neutral
gauge fields to the Higgs doublet the mass of the Z boson can be recovered as:

M2
Z =

ν2

4
(g2 + g′2) =

M2
W±

cos2 θW
, (15)

where θW is the Weinberg angle (also known as the weak mixing angle) [43]. This is
fully derived in Appendix B. The photon, on the other hand, remains massless due
to the preservation of U(1)EM symmetry. Additionally, fermions also interact with the
Higgs field, acquiring mass through Yukawa interactions.

1.2 Higgs to Bottom-Antibottom Quark Decay Mode

The existence of the Higgs mechanism was confirmed in 2012, when the Higgs bo-
son was discovered by the CMS collaboration [46], which was soon followed by results
presented by the ATLAS experiment [47]. Since then, many Higgs decay modes have
been measured, such as H → ZZ → 4l, H → W+W−, H → bb̄, H → γγ, H → e+e−,
H → µ+µ−, and H → τ+τ−.

The lifetime of the Higgs boson is short, resulting in a small time-of-travel in the
detector before it decays. The lifetime can be calculated using the branching ratio and
the reduced Planck constant through the following equation:

τH =
ℏ
ΓH

, (16)

where τH is the lifetime of the Higgs, ΓH its full decay width, and ℏ is the reduced
Planck constant. Using the most recent value for ΓH as reported by the Particle
Data Group (2024)4, in addition to the CODATA value for the Planck constant5, the
following lifetime is computed:

τH =
(
1.78+1.08

−0.60

)
× 10−22 s, (17)

4ΓH = 3.7+1.9
−1.4 MeV [48]

5ℏ = 6.582119569...× 10−16 eV s [49]
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where the error was estimated using the usual error propagation method [48, 49].
The above estimate is within the error margin of the theoretically computed value of
1.6× 10−22 s [50].

With a branching fraction of (53 ± 8)%, the most common Higgs decay is to a
bottom-antibottom quark pair [49]. This decay channel was observed at the LHC
in 2018 through the VH production mode (Higgs in association with a vector boson)
[51]. A significant obstacle to measuring this decay was the high presence of QCD
background, which made it difficult to isolate and reconstruct the signal.
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Figure 2.2: ggH Production Mechanism of single Higgs and Di-Higgs
Diagram 2.2a depicts a single Higgs boson decaying into two b quarks. Shown in Diagram
2.2b is the Higgs self-coupling mechanism resulting in a final state with four b quarks. A

similar diagram can be drawn for the process in Figure 2.3b, with each Higgs boson decaying
into a bb̄ pair. For comparison, Diagram 2.2c shows a QCD background process that can

mimic these Higgs decay signatures.

The choice to develop an ML trigger system trained on simulated gg → H → bb̄

events is driven by a combination of experimental practicality and strong physics
motivation. Among all Higgs production modes, gluon fusion has the highest cross
section at the LHC, making it the most statistically rich source of Higgs events. By
concentrating on a single, well-understood channel with distinct kinematic proper-
ties, systematic uncertainties can be reduced and events can be more accurately sim-
ulated. This results in more robust training data for ML models, ultimately enhanc-
ing QCD background rejection and signal efficiency. Improved trigger-level H → bb̄

tagging can contribute to more precise measurements of the bottom quark Yukawa
coupling in single-Higgs production, and facilitate better sensitivity to di-Higgs final
states relevant for probing the Higgs self-coupling discussed in Chapter II, Section
1.3.

The bottom quark Yukawa coupling, yb, is a fundamental parameter in the Stan-
dard Model, governing the strength of the interaction between the Higgs field and the
bottom quark. Precise measurements of yb are essential for testing the proportional-
ity between fermion masses and their couplings to the Higgs boson, a core prediction
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of the Higgs mechanism. Any deviation from the SM expectation could signal new
dynamics in the Higgs sector or the presence of additional BSM interactions.

Beyond testing the SM prediction for the bottom Yukawa coupling, measurements
of H → bb̄ events also offer sensitivity to potential BSM effects [52]-[58]. In particu-
lar, analyzing high-pT (boosted) H → bb̄ decays provides an alternative approach for
probing the top quark Yukawa coupling, complementary to the tt̄H production mech-
anism (see Appendix A, Diagram A.1c). Moreover, at high transverse momentum, the
process gg → H → bb̄ becomes sensitive to virtual contributions from heavy BSM par-
ticles in the gluon-fusion loop, offering a potential window into new physics through
deviations in the Higgs kinematic distributions.

1.3 The Higgs Potential, Self-Coupling, and Di-Higgs Production

In addition to coupling with SM particles, the Higgs boson is theoretically pre-
dicted to exhibit self-interactions, as described by the structure of the Higgs poten-
tial. This phenomenon, referred to as Higgs self-coupling, is encoded in the scalar
potential of the SM Higgs field, given in Equation 9. Upon spontaneous symmetry
breaking, the Higgs field acquires a vacuum expectation value and the potential can
be perturbatively expanded around the physical Higgs field to yield interaction terms,
including a trilinear self-coupling term proportional to λ (see Equation 11).

Experimentally, the trilinear Higgs self-coupling is most directly accessible via
processes involving the production of Higgs boson pairs, commonly referred to as "di-
Higgs" production. Although the total di-Higgs production cross section is influenced
by multiple contributions — including box diagrams and triangle diagrams involving
the trilinear vertex — deviations in the measured rate or kinematic distributions
from the SM predictions can be used to constrain or extract the value of λ.

It is important to emphasize that di-Higgs production does not offer a model in-
dependent measurement of the Higgs potential in its entirety. Instead, it provides
empirical access to the cubic term of the potential, and by extension, to the coeffi-
cient λ when combined with an independent determination of mH . Given the estab-
lished relation m2

H = 2λν2, the self-coupling constant λ, and hence the entire shape of
the scalar potential, can be inferred and cross-validated with experimental measure-
ments of both mH and λ.

Experimentally, precise determination of λ is of critical importance, as any devi-
ation from the SM prediction would signal new physics. Such deviations could arise
from extended scalar sectors, modified Higgs dynamics, or non-standard electroweak
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symmetry breaking mechanisms.
Mathematically, a di-Higgs measurement is aimed to determine κλ, a constant

defined as:

κλ =
λex

λSM
, (18)

where λex is the experimentally measured value of λ, and λSM is the SM predicted
value, which can be obtained through a prior measurement of the Higgs boson mass
(and knowledge of v). If the SM is correct, κλ is expected to be 1. Any experimentally
significant deviation from this value is a clear indicator of BSM physics.
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Figure 2.3: Di-Higgs Production Processes Through the Gluon-Gluon Fusion
Mechanism

Figure 2.3 illustrates two Feynman diagrams contributing to di-Higgs production
through the gluon-gluon fusion (ggF) mechanism. Although diagram 2.3b is indepen-
dent of the Higgs self-coupling, its amplitude interferes with that of diagram 2.3a,
whose triple-Higgs vertex is parametrized by κλ and is thus sensitive to the self-
coupling. As a result, the overall di-Higgs production rate is determined by the coher-
ent sum of both contributions, including interference effects [45]. By comparing the
measured di-Higgs rates and distributions to theoretical predictions, one can extract
the value of κλ.

Due to a high branching ratio, the HH → bb̄bb̄ final state offers a particularly
promising avenue for di-Higgs measurements. However, this channel is also subject
to significant QCD multi-jet backgrounds, necessitating refined strategies for distin-
guishing the signal. One powerful approach is to exploit boosted topologies, where the
Higgs boson has a high transverse momentum and its decay products are collimated.
In such scenarios, jet substructure and advanced b-tagging techniques can be used to
identify Higgs candidates more efficiently and suppress the large background. The
trigger algorithm developed in this thesis, WOMBAT, is specifically designed to locate
boosted H → bb̄ jets at the Level-1 Calorimeter Trigger, aiming for high efficiency
in event selection and jet tagging. It is important to note that WOMBAT does not
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target di-Higgs production specifically, but rather enhances sensitivity to individual
H → bb̄ decays. Meanwhile, other decay channels (e.g. HH → bb̄γγ, HH → bb̄lνlν, and
HH → bb̄ττ ) can provide complementary measurements of the Higgs self-coupling,
each offering different sensitivities and systematic uncertainties.

2. Jet Clustering

High-energy collisions that involve quarks and gluons in the final state often rep-
resent some of the most interesting processes in particle physics. Because these
colored partons have extremely short lifetimes after a collision and cannot exist as
free particles due to color confinement, they hadronize into jets, which are collimated
streams of hadrons. As these hadrons propagate through the detector, they may un-
dergo secondary decay or scattering processes (often called particle showers), further
contributing to the observed final-state signature.

In online data analyses, jets are typically reconstructed via the PF algorithm,
which uses calorimeter tower information. For more precise offline analyses, clus-
tering algorithms such as the anti-kT technique are commonly employed [59]. This
algorithm iterates over all detected particles, identifies those that are nearest neigh-
bors in phase space, and decides whether they should be merged, as summarized by

di,j =
∆2

i,j

R2
min(p−2

T,i, p
−2
T,j),

if: di,j < p−2
T,i then: combine,

if: di,j > p−2
T,i then: stop,

(19)

where ∆2
i,j = (ηi − ηj)

2 + (ϕi − ϕj)
2, i, j are particle indices, and R is the jet radius

parameter, commonly selected to be 0.4 (known as AK4 jets) or 0.8 (AK8 jets). This
procedure ensures that jets are robustly identified and clustered in a manner that
reflects the underlying parton kinematics while accounting for the spatial distribution
of the final-state particles.

2.1 Boosted Jets

Boosted jets comprise a class of high-transverse-momentum (pT ) events observed
at the CMS detector. These jets are typically produced by the decay of massive par-
ticles (e.g., the Higgs boson or the top quark) that acquire significant Lorentz boosts.
As a result, their decay products are highly collimated, often merging into a single
jet-like structure, as depicted in Figure 2.4. This high degree of collimation makes it
increasingly challenging to resolve individual decay products and accurately measure
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their kinematic properties.

Figure 2.4: Visualization of Particle Decay Collimation With Increasing pT

One of the primary difficulties in detecting boosted jets at the L1T stage is the
substantial background from QCD processes. Distinguishing signals of interest (e.g.,
those originating from Higgs bosons) from this background requires precise energy
and momentum measurements, which can be difficult to achieve within the strict
real-time constraints of the L1T system. Moreover, the granularity of the L1 readout
is often insufficient to fully resolve jet substructure, including the presence of multiple
subjets within a single, merged jet.

The upcoming Phase 2 upgrades to the CMS L1T are designed to address these
challenges by increasing detector granularity and enhancing real-time processing ca-
pabilities. These improvements will facilitate more efficient identification of boosted
jets and better discrimination of their internal substructure. Additionally, emerging
ML techniques show significant promise for further enhancing the performance of
L1-based jet identification [61]. Methods such as deep neural networks (DNNs) and
boosted decision trees (BDTs) can be trained on extensive datasets (both simulated
and real) to identify complex patterns indicative of boosted jets. By implementing
these algorithms on FPGAs, it is possible to achieve low-latency and rapid, high-
volume data processing, thereby maintaining sensitivity to rare processes such as
Higgs boson decays into bb̄ pairs while substantially reducing background contami-
nation. These ML-based strategies have demonstrated enhanced signal purity and
lower false-positive rates, thus improving the overall efficiency and physics reach of
the trigger system.
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3. WOMBAT: Motivation

The extremely collimated nature of boosted jets from high pT Higgs decays presents
a unique challenge for real-time event selection at the L1T. While the Phase 2 up-
grades to the CMS calorimeter and readout electronics will enhance spatial resolution
and data processing capabilities, fully leveraging this improved hardware to identify
boosted Higgs bosons in their dominant bb̄ decay mode still requires specialized al-
gorithms. To address this, ML-based trigger systems are being developed for L1T
electronics, extending the physics reach of the current setup while serving as proto-
types for Phase 2.

Figure 2.5: Phase-2 Physics Reach Based on L1T System [62] (modified to include
WOMBAT)

The first column shows links between TPs from different systems and the associated
trigger objects (second column), which use L1 Algorithms (third column) to reach a

specific physics goal shown (fourth column). Dashed black lines represent new links
formed by the WOMBAT standalone calorimeter jet tagging algorithm.

Efficient event tagging at the L1T is essential for enriching datasets with relevant
processes, enabling more precise measurements. However, existing boosted H → bb̄

algorithms rely on deterministic energy sum calculations, which are computationally
expensive for real-time execution.

This thesis presents WOMBAT (Wide Object ML Boosted Algorithm Trigger), an
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ML-based system designed for implementation in the Calorimeter Layer 1 (Calo-
Layer1) of the L1T for boosted gg → H → bb̄ jet tagging and clustering. The primary
motivation for this trigger is to improve rapid event selection for Yukawa coupling
measurements, di-Higgs studies, as well as BSM searches discussed in Chapter II,
Sections 1.2 and 1.3. While the WOMBAT algorithm is not explicitly designed to
isolate di-Higgs production, it enhances sensitivity to boosted H → bb̄ decays at the
L1 Calorimeter Trigger. This improved tagging efficiency increases the likelihood of
capturing rare signatures, including those from di-Higgs events and BSM processes
that manifest through modified kinematics or excesses in the bb̄ final state. In an on-
line implementation, such enriched datasets would be passed to the HLT for further
refinement and potential signal isolation.

WOMBAT takes raw data from the CTP7 cards in the calorimeter with minimal
pre-processing. It identifies boosted H → bb̄ jet clusters in the TPs and outputs the
center coordinates of the leading-order jets in indexed η − ϕ space. In this context,
WOMBAT is considered a standalone calorimeter trigger, which refers to a system
that makes decisions based solely on calorimeter information without relying on in-
puts from other subdetectors, such as the Silicon Tracker or muon systems.

Although WOMBAT was developed for the Phase-1 L1T system, it serves as a
proof-of-concept demonstrating that ML-based jet tagging is feasible within current
hardware constraints. While not designed for Phase-2, WOMBAT illustrates the po-
tential of ML-based triggers, which are expected to perform even more effectively un-
der the upgraded architecture, benefiting from increased bandwidth, finer granular-
ity, and enhanced processing capabilities. In this context, WOMBAT-inspired systems
could serve as standalone calorimeter triggers for identifying boosted H → bb̄ decays
at the L1T. As shown in Figure 2.5, which presents the projected physics reach for
Phase-2 triggers, WOMBAT-like systems form new, critical links between low-level
TPs and high-level Higgs physics. Unlike traditional missing ET or VBF-based selec-
tions, WOMBAT targets the dominant ggH production mode using only calorimetric
information, enhancing L1A efficiency for bb̄ final states.
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Chapter III: Data Structure, Samples Used, and Data
Pre-processing

1. Datasets and Monte Carlo Samples

For ML training and evaluation purposes, simulated Monte Carlo (MC) events
were generated using the MadGraph5_aMC@NLO event generator [63], which mod-
els the hard scattering matrix element at next-to-leading order (NLO) in QCD. The
event generation includes up to two additional partons in the matrix element calcu-
lation, allowing for the explicit simulation of final states with up to two extra jets
originating from the hard process. This matrix element multiplicity is matched to the
parton shower using the MLM merging scheme to avoid double-counting of emissions
between the hard scattering and the subsequent parton showering [64]. The inclu-
sion of multi-parton matrix elements significantly improves the modeling of complex,
high-multiplicity final states characteristic of boosted Higgs boson production, partic-
ularly in H → bb̄ decays where the decay products may be reconstructed as a single
large-radius jet. To select events within the boosted regime, a transverse momentum
threshold of pT > 250 GeV is applied at the generator level to the Higgs boson. This
requirement enhances the signal-to-background ratio in the dataset used to train and
evaluate WOMBAT which triggers on boosted topologies.

The generated events are interfaced with Pythia8 [65] for parton showering and
hadronization, which simulate the evolution of colored partons into colorless hadrons,
including soft and collinear QCD radiation, underlying event activity, and hadron
decays. The matching between the matrix element and parton shower is carefully
handled to preserve the accuracy of high-pT observables while maintaining infrared
safety.6 Final-state hadrons are processed through a dedicated CMS trigger simu-
lation framework, based on Geant4 [66], which emulates the detector response rel-
evant for L1 TPs, including calorimeter digitization, trigger tower granularity, and
electronic response effects.

To evaluate the trigger rate, Zero Bias (ZB) data was utilized. This dataset con-
sists of events recorded solely based on the occurrence of a bunch crossing, without
any additional physics-based trigger conditions. As its name suggests, ZB data is

6Infrared safety refers to the requirement that physical observables remain insensitive to the emis-
sion of soft gluons or collinear splitting of partons, ensuring theoretical predictions are well-defined
and stable. Proper matrix element and parton shower matching preserves this property by avoiding
divergences and double-counting in soft/collinear regions of phase space.
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inherently unbiased, making it a representative snapshot of the full range of detec-
tor activity following a collision, including background noise, low-energy interactions,
and pileup effects.

This makes ZB data especially valuable for assessing the performance and ex-
pected rates of trigger algorithms, such as WOMBAT, under realistic LHC running
conditions. Since only a small fraction of all collisions produce events of physical in-
terest, passing ZB events through the WOMBAT trigger provides insight into how
the algorithm behaves in the presence of high event rates, noise, and pileup. This
provides a metric for how frequently the trigger issues an L1A decision under real-
istic conditions. Since the data acquisition system cannot record every event due to
bandwidth and storage limitations, the goal of any trigger system is to maintain a
low acceptance rate while maximizing efficiency for selecting physics-rich events.

The ZB data used was taken during Run 3 of the LHC, in a period of stable
beam and detector conditions known as Era C of 2023. In particular, the sample
is ZeroBias/ Run2023C-PromptReco-v1/MINIAOD, which has an integrated lumi-
nosity of 0.64 fb−1, as calculated through the Brilcalc framework [67].

Passing ZB data through the trigger algorithm was carried out using the CMS Re-
mote Analysis Builder (CRAB) framework. CRAB provides a streamlined interface
for submitting and managing large-scale distributed computing jobs across the CMS
grid infrastructure. It enables efficient processing of extensive datasets like ZB by
handling job distribution, resource allocation, and output collection, all while ensur-
ing consistency and scalability across the analysis workflow.

CRAB jobs process ZB and MC samples into n-tuples, flat ROOT-based data struc-
tures typically stored in TTree format, which encode per-event physics objects (e.g.,
jets, muons, trigger primitives) as branches of C++-type arrays or scalar variables.
For the ZB dataset ZeroBias/Run2023C-PromptReco-v1/MINIAOD, custom CMSSW
analyzers traverse the MINIAOD event content to extract quantities relevant for
L1T emulation and ML inference. These include calorimeter TPs, generator-level
information (such as η, ϕ, and pT ), jet substructure variables, and full collections of
physics objects such as AK8 jets, subjets, and tau seeds stored as TLorentzVector
arrays. These branches are serialized using ROOT’s high-throughput Input/Output
(I/O) backend and compressed to optimize disk usage and access speed. The resulting
n-tuples contain the subset of events that pass the WOMBAT trigger emulation, as
well as those that pass the Single Jet 180 algorithm, detailed in Chapter IV, Section 7.
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Figure 3.1: Phase-1 CMS Calorimeter Trigger Tower Segmentation
Black grids represent TTs which cover approximately (0.087)× (0.087 radians) in η × ϕ space.

Blue grids comprise of 4× 4 TTs, which are the fundamental units of each CaloLayer1 TP
region. All trigger regions marked in red are used as input to WOMBAT. The |η| > 2.4 region

is excluded. The TP regions amount to 14× 18 in η × ϕ.

2. Trigger Primitives Input

As a standalone calorimeter trigger, WOMBAT fully relies on TP information from
the ECAL and HCAL barrel and endcap detectors. These calorimeters provide cover-
age within a pseudorapidity range of |η| < 3 and encompass the full azimuthal angle,
0 ≤ ϕ < 2π. Due to the geometry of the detector, the barrel (associated with ϕ) and
endcap (associated with η) calorimeter TPs require different analysis approaches. For
a geometric view of the detector refer to Appendix C.

The CMS calorimeter segmentation is illustrated in Figure 3.1, where the red-
shaded region denotes the 14 × 18 input grid in η × ϕ used by WOMBAT. Each blue-
outlined CaloLayer1 TP region comprises a 4× 4 array of TTs, shown in black. Due to
L1T computational constraints, WOMBAT’s ML models operate at the coarser Calo-
Layer1 TP granularity rather than full TT resolution. Consequently, model predic-
tions span a 14× 18 index space in η × ϕ.

To recover TT-level precision, WOMBAT manually identifies the maximum ET TT
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within each selected CaloLayer 1 TP region, assigning H → bb̄ jet locations accord-
ingly. This dimensionality reduction enables a more tractable ML architecture with
252 input features, significantly fewer than the full TT set.7 Each input feature cor-
responds to the summed ET within a TP region, retaining key kinematic information
while supporting low-latency inference.

(a) Raw TP Display (b) Processed TP Display

Figure 3.2: Raw and Processed Calorimeter TP Display (Event 3468)
Figure 3.2a is a display of raw calorimeter values with associated TTs. In Figure 3.2b, this
event was processed through offline reconstruction (AK8 Jets) and the WOMBAT trigger

system to locate H → bb̄ jet centers.

An example TP input can be seen in Figure 3.2, which contains boosted H → bb̄

jets with pT in the range of 150.8 GeV (jet 3) to 220.8 GeV (jet 1). This event is extracted
from the MC dataset used for an efficiency evaluation of the WOMBAT trigger system.
While the legend uses labels such as HCAL and ECAL TPGs instead of TPs, this refers
to the same underlying data. The term Trigger Primitive Generator (TPG) denotes
the hardware or firmware responsible for producing TPs from raw calorimeter signals.
As a result, “TPGs” is often used interchangeably with “TPs” to indicate the output
of this processing step. In this context, the labels represent the four-vector quantities

7To illustrate the scaling challenge, WOMBAT Master Model (W-MM) selects 3 jet centers from 252
regions, yielding 2523 = 16, 003, 008 possible outputs under independent sampling with replacement
(63, 504 for the WOMBAT Apprentice Model, W-AM). At TT granularity, assuming each CaloLayer1 TP
region contains 4 × 4 TTs, the input space expands to 252 × 16 = 4032 points. This results in 40323 =
65, 548, 320, 768 possible outputs for W-MM and 40322 = 16, 257, 024 for W-AM-a dramatic increase in
model complexity. Such high-resolution modeling exceeds the resource capacity of current L1T FPGAs,
making it impractical due to prohibitive computational and latency constraints.
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produced by the TPGs.
Visually, due to the high level of activity, this TP grid contains physics signatures

of potential interest, with multiple H → bb̄ jet candidates. Ideally, a trigger system
should be able to declare this event an L1A by resolving jet substructure and locating
relevant H → bb̄ decay products.

Figure 3.2b illustrates WOMBAT’s jet-tagging performance, benchmarked against
an offline AK8 reconstruction algorithm, which utilizes high-granularity inputs from
multiple detector subsystems. In this event, both algorithms identified the same
H → bb̄ candidates. While a detailed discussion of the algorithms and analysis is
provided in Chapters IV and V, it is worth noting that this event was deliberately se-
lected to highlight the role of jet substructure and TP patterns in b-tagging. Notably,
both algorithms rejected a mid-energy cluster near (η, ϕ) ≈ (−1, 3) as a boosted Higgs
candidate, likely due to latent features in the TP data.

As shown in Figure 3.1, WOMBAT’s ML models restrict input TPs to |η| < 2.4

due to non-uniform sampling in η. However, predictions can still map to edge TTs,
enabling jet tagging across the full TP grid. The outputs of WOMBAT are indexed by
CaloLayer1 trigger regions rather than individual TTs, and precise jet locations are
resolved during the conversion from index space to real coordinates. Consequently,
predictions at η indices 0 or 13 correspond to CaloLayer1 regions that encompass
|η| ≥ 2.4, allowing tagging in those outer regions despite input limitations.

3. WOMBAT Data Processing and Label Generation

WOMBAT accepts lower-granularity input from the HCAL and ECAL TPs in a
fixed-precision integer format. Each calorimeter region encodes the transverse en-
ergy as a 10-bit unsigned integer, quantized uniformly over the interval [0, 1023]. Each
increment value corresponds to one least significant bit (LSB), representing the small-
est resolvable energy increment in hardware. This ensures that the algorithm meets
strict latency constraints while maintaining a high degree of accuracy. When de-
ployed online, WOMBAT is designed to require minimal input pre-processing, mainly
related to data formatting (see Chapter IV, Section 5). However, for model training,
labels were manually computed, and input processing was required to ensure com-
patibility with the model’s discretized output.

Although the MC samples contain extensive event information, only a small sub-
set is used for model training and evaluation. The pre-processing pipeline begins
with a filtering algorithm that selects only boosted H → bb̄ events from a ROOT file,
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which are subsequently converted to an HDF5 format. This filtering is performed by
referencing the generator-level particle identifier (genID), ensuring that only Higgs
boson events are retained for training. Once the events of interest have been iso-
lated, the calorimeter region information (c-region) is extracted and reshaped into an
14 × 18 grid, corresponding to the segmentation of the CMS calorimeter. These TPs
encompass a large segment of pseudorapidity space (|η| ≤ 2.4) and the entire span of
ϕ.

In addition to the c-regions data, other kinematic features-such as the pT of the
Higgs boson, as well as its generator-level pseudorapidity (genEta) and azimuthal
angle (genPhi) are also extracted. To ensure compatibility with the c-regions grid
structure, genEta and genPhi undergo a transformation from real-space coordinates
to an indexed space representation. This transformation is directly tied to the Calo-
Layer1 TP regions, as each covers a specific portion of the calorimeter, and the map-
ping of genEta and genPhi onto the indexed space aligns with this segmentation. The
transformed coordinates, referred to as indexed Eta (iEta) and indexed Phi (iPhi),
span fixed integer ranges from 0 to 13 for iEta and from 0 to 17 for iPhi.

Although the extracted iEta and iPhi values were not used in WOMBAT’s architec-
ture, they were essential for developing the label-generating algorithm. Its purpose
is to identify the highest energy leading order (LO) clusters (corresponding to high-pT
jets) in each c-region. The algorithm uses a maximum filter operation [68], which ap-
plies a 3 × 3 sliding window to detect local maxima by comparing each element to its
neighbors. A connected-component labeling step groups contiguous maxima, defining
distinct energy clusters. For each extremum, the ET and corresponding indexed co-
ordinates (iPhi, iEta) are extracted. A thresholding step filters out low-energy noise,
and the remaining extrema are ranked by ET . Depending on the model, the top three
(or two, for the WOMBAT Apprentice model) peaks are selected and their coordinates
are used as training and evaluation labels for the model.

After WOMBAT generates predictions in indexed space, these are converted to
real η-ϕ coordinates. Each selected CaloLayer1 region is scanned to identify the TT
with the highest energy deposit, which is then designated as the predicted jet center
and converted into physical coordinates. Although WOMBAT operates on TP region-
level inputs without TT-level granularity, a lightweight post-processing step resolves
jet positions at TT-level precision.
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Chapter IV: WOMBAT Architecture, Performance, and
FPGA Implementation

1. Deep Neural Networks: Background

Ever since the initial proposal in 1943, Deep Neural Networks (DNNs) have been
recognized for their ability to learn representative features from complex high-dimensional
data, making them well-suited for tasks such as real-time triggering and classifica-
tion in proton-proton collision events [69]. In particular, Convolutional Neural Net-
works (CNNs) have become a cornerstone for processing grid-structured data. The
standard mathematical definition of convolution is [70]:

s(t) = (x · w)(t) =
∫

x(a)w(t− a) da, (20)

which is an operation describing how the signal input function, x(a), is weighted with
the signal w(t), which can be thought of as a filter applied to x(t). For two-dimensional
data, such as TPs, the convolution can be represented as:

S(i, j) = (I ·K)(i, j) =
∑
m

∑
n

I(i · s+m, j · s+ n)K(m,n), (21)

where I denotes the input image, K represents a filter, (i, j) are indices, and s is the
stride parameter.

While CNNs excel at spatial feature extraction, this thesis introduces an innova-
tive hybrid approach that integrates an autoencoder (AE) within the CNN architec-
ture. AEs are unsupervised neural networks designed to learn compressed represen-
tations of input data by encoding it into a lower-dimensional latent space and then
reconstructing it. This two-step process, involving an encoder and a decoder, enables
AEs to remove noise, extract meaningful latent features, and facilitate efficient data
compression. Latent features, also known as latent variables or hidden representa-
tions, are the underlying factors inferred by the model during training.

The WOMBAT architecture incorporates the proposed Embedded Deterministic
Autoencoder (EDA) to compress the ϕ dimension while preserving the granularity of
η.8 This design choice is motivated by the consistent resolution and cyclic nature of

8During early development, the CNN achieved a maximum R2 of 0.89, while the proposed EDA
model reached 0.98 under identical training conditions. Since higher R2 indicates improved accuracy,
performance was further validated on unseen data to rule out overfitting.
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ϕ, which enables the EDA to extract intricate features that conventional CNNs might
overlook. In contrast, maintaining higher-resolution η information ensures effective
local feature extraction across network layers, which is critical for a trigger system.
Although downsampling both dimensions would improve computational efficiency, it
significantly reduces the model’s ability to resolve jet substructure effectively.

Due to the high complexity of this algorithm, WOMBAT was developed as a knowl-
edge diffusion framework in which a large EDA-based model, referred to as the WOM-
BAT Master Model (W-MM), serves as a teacher model. The W-MM generates labels
and transfers structured knowledge to a simplified CNN model, referred to as the
WOMBAT Apprentice Model (W-AM), enabling it to learn essential patterns and gen-
eralize effectively while maintaining computational efficiency. Both models are eval-
uated using the same criteria and software, however, only the W-AM was deployed in
firmware due to latency and resource constraints.

To evaluate WOMBAT’s performance and establish a baseline for comparison with
ML-based approaches, a fully deterministic, rule-based algorithm was implemented
on FPGA hardware. The Jet Event Deterministic Identifier (JEDI), originally referred
to as "Bit Pattern", is a manually engineered pipeline that mirrors the trigger-level
reasoning including fixed thresholding, lookup table corrections, and spatial pattern
matching. The input is identical to WOMBAT, a 14×18 grid of CaloLayer1 TP regions,
each quantized to 10 bits. By computing 3 × 3 energy sums, JEDI identifies localized
high-energy deposits indicative of jet activity. These sums are filtered through a spa-
tial pattern matching logic that is pre-defined to capture signatures of boosted H → bb̄

decays. Unlike the WOMBAT trigger system, which learns complex spatial and ener-
getic correlations directly from the TP data with minimal manual input, JEDI relies
entirely on predefined logic for jet tagging. This makes the comparison between these
two algorithms especially compelling, as it highlights the fundamental contrast be-
tween data-driven learning and rule-based L1T classification.

2. WOMBAT Models Architecture

The high-level structure of WOMBAT can be summarized as follows:

• WOMBAT Master Model (W-MM): A large CNN model incorporating an EDA
architecture, designed to maximize performance without significant constraints
on resource usage or latency. It outputs the location of either two or three jets.

• WOMBAT Apprentice Model (W-AM): An 8-bit quantized CNN model built
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using the quantized Keras (QKeras) library [71]. It features a custom thresh-
old layer and is designed to output the location of exactly two jets. Optimized
for FPGA implementation, it adheres to strict latency and resource usage con-
straints.

• WOMBAT Apprentice Skeleton Model (W-ASM): A streamlined variant of W-
AM, lacking custom layers and featuring a single output in the form of a dense
layer. Used solely for HLS4ML [72] code generation, whereas the custom layers
and weights of W-AM are manually implemented in firmware.

A schematic overview of the models can be seen in Appendix D.

2.1 WOMBAT Master Model Architecture

W-MM is implemented using TensorFlow’s Keras API [73] and incorporates a com-
bination of convolutional layers, batch normalization, and activation functions to ex-
tract and encode spatial features. A key innovation in the architecture is the EDA,
which compresses the cyclic ϕ dimension while maintaining high-resolution informa-
tion in η. While the W-MM is computationally intensive, it serves as a teacher model
in a knowledge distillation framework, training the more efficient W-AM for real-time
deployment in firmware-constrained environments.

2.2 Embedded Deterministic Autoencoder

WOMBAT’s EDA architecture can be represented by:

z = fΩ(x), x̂ = gΦ(z), (22)

where fΩ is the encoder function parametrized by the set Ω, x is the input, gΦ is the
decoder function parametrized by the set Φ, and x̂ is the output.

2.2.1 Encoder Function and Custom Layers
More explicitly, given the input x ∈ R18×14×1, the encoder function fΩ is composed

of three main stages:

• 1. Pre-processing:

During pre-processing, a value of 30 GeV is subtracted from each TP region. This
is performed through a modified ReLU operation which can be written as:

xpre = max{x(i, j)− 30, 0}. (23)
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It is relevant to note that this operation is encoded in the WOMBAT’s structure
and does not need to be performed externally.

• 2. Convolutional Feature Extraction:

The preprocessed input is then passed through a series of custom encoder blocks
defined as:

E(y; f, k, s) = ReLU

(
BN
(

Conv2D(C(y); f, k, s)
))

, (24)

where C(y) is the custom circular padding function with input y, f is the number of
filters, k is the kernel size (set to (3× 3)), and s is the stride (set to (1, 1)). The layers,
BatchNormalization (BN), 2D Convolution (Conv2D), and ReLU are also represented.

Formally, C(y) circularly pads the ϕ dimension, while adding constant (zero) padding
to η. Given the input y ∈ Rϕ×η×1, where 1 is the number of channels used by WOM-
BAT, C(y) for a single sample can be represented as:

Cϕ(y(i, j, 1)) =


y(ϕ− p+ i, j, 1), 0 ≤ i < p,

y(i− p, j, 1), p ≤ i < ϕ+ p,

y(i− ϕ− p, j, 1), ϕ+ p ≤ i < ϕ+ 2p,

(25)

Cη(y(i, j, 1)) =


0, 0 ≤ j < q,

y(i, j − q, 1), q ≤ j < η + q,

0, η + q ≤ j < η + 2q,

(26)

where p is the number of rows that are circularly padded along ϕ, (i, j) are the row
and column indices in the padded output, and q is the number of columns added as
zeroes to the η dimension. By default, WOMBAT uses only 1 channel with ϕ = 18

and η = 14. To minimize resource usage, p and q are set to 1, however, the dynamic
implementation of this layer allows for any choice of parameters.

The model features three encoder blocks, where the first two are followed by
a MaxPooling layer with a pooling window of (2, 1). This operation performs an
anisotropic downsampling of the feature map and thus reduces the spatial dimension
of the input. With each pooling operation, the effective receptive field of the network
increases. This allows deeper layers to capture the broader context and complex jet
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patterns, making it easier to identify features in the TPs originating from boosted
H → bb̄ events.

Defining pn such that:

pn(i, j) = max{yn(2i, j, 1), yn(2i+ 1, j)} ⇒ pn = MaxPool(2,1)(yn) (27)

for n being the index of the layer.
Given these definitions, WOMBAT’s EDA encodes the input as:

y1 = E
(
xpre; 32, (3, 3), (1, 1)

)
, (28)

p1 = MaxPool(2,1)
(
y1

)
, (29)

y2 = E
(
p1; 64, (3, 3), (1, 1)

)
, (30)

p2 = MaxPool(2,1)
(
y2

)
, (31)

y3 = E
(
p2; 128, (3, 3), (1, 1)

)
. (32)

• 3. Latent Representation:

Following the pooling and convolution operations, the output y3 has dimensions of
R4×14×128. This is then flattened and mapped to a latent vector z ∈ R128 using a dense
layer with a ReLU activation function:

fΩ = z = ReLU
(
Wf · Flatten(y3) + bf

)
, (33)

for a weight matrix Wf and an associated bias term bf .

2.2.2 Decoder Function

The decoder function gΦ maps the latent vector z back to the reconstruction x̂ in
the original space. The pipeline can be outlined as follows:

• 1. Dense Layer Projection and Reshaping

Initially, z is reshaped into a tensor of dimensions R4×14×128 through the function:

h = Reshape
(

ReLU(Wg · z + bg)
)
, (34)

for a weight matrix Wg and bias term bg.

• 2. Up-sampling and Reconstruction
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Following the reshaping operation, reconstruction is performed using a decoder
block that mirrors the encoder. This can be defined as:

D(y; f, k, s) = ReLU

(
BN
(

Conv2D(C(y); f, k, s)
))

. (35)

The reconstruction process uses up-sampling, which is an operation that increases
the spatial dimension of the input, reversing the MaxPooling(2,1) performed by the
encoder. Letting X be an input feature map with dimensions RH×W and U be the
up-sampled output with dimensions R(2H)×W , for each output pixel U(i, j) the up-
sampling can be written as:

U(i, j) = UpSampling(2,1)(X) = X
([ i

2

]
, j
)
, (36)

where
[
i
2

]
implies floor division.

Using this definition, the reconstruction pipeline is:

u1 = UpSampling(2,1)

(
h
)
, (37)

d1 = D
(
u1; 128, (3, 3), (1, 1)

)
, (38)

u2 = UpSampling(2,1)

(
d1

)
, (39)

d2 = D
(
u2; 64, (3, 3), (1, 1)

)
. (40)

• 3. Padding and Convolution

By this stage, the indexed ϕ and η jet center predictions are already extracted. To
finalize the reconstruction, zero padding is added to the ϕ dimension in order to match
the expected output size. Given that this does not impact WOMBAT’s predictions, it
has only a structural purpose. Mathematically, d3 can be defined as d3 = Pad(d2),
which gives a compact expression for gΦ:

gΦ = x̂ = σ

(
Conv2D

(
d3; 1, (3, 3), (1, 1)

))
, (41)

where σ stands for the sigmoid activation function, defined as:

σ(x) =
1

1 + e−x
. (42)
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2.3 Global CNN Structure

The global CNN structure integrates the EDA into a multi-task framework that
simultaneously reconstructs the input and predicts the jet coordinates. In this design,
the latent vector extracted by the encoder, z, serves as the common feature represen-
tation for the two distinct branches: one dedicated to TP reconstruction and another
to coordinate regression. Although the reconstructed output is not currently used, it
serves as an auxiliary task that guides the learning of robust latent features.

In the case of W-MM, the latent representation z ∈ R128 is used to compute a
7-dimensional output, c ∈ R7 through the function:

c = σ
(
W3ReLU(W2z + b2) + b3

)
, (43)

where W2 ∈ R64×128, b2 ∈ R64, W3 ∈ R7×64, and b3 ∈ R7 are trainable parameters.
The sigmoid function provides normalization, as it ensures that each element of c lies
within the interval [0, 1].

To extract the final outputs, each entry of c = [c0, ..., c6]
T is mapped to a physical

quantity via a custom Lambda layer [74] as follows:

• Jet 1:
(
ϕ1 = c0 × 17, η1 = c1 × 13

)
,

• Jet 2:
(
ϕ2 = c2 × 17, η2 = c3 × 13

)
,

• is_there_third - A variable that is 1 if the TP contains a third jet whose 3× 3

region is has pT > 100, and 0 otherwise: c4,

• Jet 3:
(
ϕ3 = c5 × 17, η3 = c6 × 13

)
.

In parallel, the decoder branch reconstructs the input from the same latent vector
z. By jointly training the coordinate regression and reconstruction tasks, W-MM uses
a composite loss function. Although the model is pre-configured to prioritize minimiz-
ing the loss in ϕ and η, it is still able to learn the latent features extracted through
the EDA.

2.4 WOMBAT Apprentice Model Architecture

The W-AM is built using the QKeras library and incorporates a custom threshold
layer. To minimize resource usage, all weights and biases are quantized to 8 bits. The
input, x ∈ R18×14×1, is equivalent to that of W-MM, and passes through the following
ML pipeline:
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y1 = QConv2D
(
x; 4, (5, 5), (1, 1)

)
, (44)

ypre = max{y1(i, j)− 30, 0}, (45)

y2 = BN
(
ypre

)
, (46)

y3 = QConv2D
(
y2; 4, (3, 3), (1, 1)

)
, (47)

y4 = BN
(
y3

)
, (48)

y5 = QActivation(ReLU)
(
y4

)
, (49)

y6 = AvgPool(3,3)
(
y5

)
, (50)

y7 = BN
(
y6

)
, (51)

z = Flatten
(
Wz · y7 + bz

)
, (52)

z1 = QActivation(ReLU)
(
z
)
. (53)

In the above notation, the prefix Q indicates that the layer is quantized and part of
the QKeras library. As previously, the associated weight matrix and bias vectors are
labeled as W and b.

Following this pipeline, the network produces a latent vector z2 ∈ R33. This 33-
dimensional latent representation is then transformed into the physical quantities ϕ1,
η1, ϕ2, and η2 via four separate dense (fully connected) layers. Each dense layer per-
forms an affine transformation with its own trainable weight matrix and bias vector,
such that:

ϕ1 =
(
Wϕ1 · z2 + bϕ1

)
, (54)

η1 =
(
Wη1 · z2 + bη1

)
, (55)

ϕ2 =
(
Wϕ2 · z2 + bϕ2

)
, (56)

η2 =
(
Wη2 · z2 + bη2

)
, (57)

where Wϕ1,η1,ϕ2,η2 ∈ R1×33, and bϕ1,η1,ϕ2,η2 ∈ R1.
As shown above, the output of W-AM is fixed at two jet centers, whereas W-MM

predicts up to three. In the FPGA implementation, discussed in Chapter IV, Section
5, the expected output is a single dense layer. Since this does not reduce the number
of trainable parameters, it does not amount to a significant performance difference.
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Mathematically, the W-ASM output can be shown as:

ϕ1

η1

ϕ2

η2


=
(
Wz2 · z2 + bz2

)
=



Wϕ1

Wη1

Wϕ2

Wη2


· z2 +



bϕ1

bη1

bϕ2

bη2


, (58)

where Wz2 ∈ R4×33 and bz2 ∈ R4.
Since matrix multiplication is linear, partitioning the transformation into four

parts or combining them into a single operation does not change the underlying func-
tion that maps z2 to the outputs. In this sense the W-AM and W-ASM models are
equivalent, however, the split output offers more compatibility with the analysis soft-
ware used. This is a choice of representation which does not affect the learning capa-
bilities of either model.

The main difference between W-AM and W-ASM is in the definition of the thresh-
old layer, ypre:

W-AM: ypre = max{y1(i, j)− 30, 0}, (59)

W-ASM ypre = max{y1(i, j), 0} = QActivation(ReLU)
(
y1

)
. (60)

Evaluations demonstrate that W-AM is more effective at noise filtering and captur-
ing latent features in the data. While the W-ASM is initially implemented in FPGAs,
the weights, biases, and custom activation layers from a pre-trained W-AM are manu-
ally added later. Consequently, the FPGA implementation is fully that of W-AM, with
W-ASM serving as an intermediate stage of development.

During the design process of W-AM, three options were considered for the place-
ment of the pT threshold layer:

• Before y1, as the first layer of the model.

• Following y1, as the first activation function following convolution.

• Not at all due to latency considerations.

While the first option had the potential to achieve the highest performance, the in-
creased model complexity led to a significant rise in execution latency.9 Although this

9There needs to be an activation function following convolution, so adding the threshold layer before
y1 increases the model size.
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placement logically aligns with the role of an activation layer in preprocessing inter-
nal inputs, it introduced an additional 12.5 ns delay (which translates to 2 additional
clock cycles) in FPGA execution, making it less favorable for real-time applications.

However, rather than completely discarding the layer, an alternative approach was
to replace the ReLU activation following y1. This substitution resulted in a notable
performance improvement compared to the third option, which omitted the thresh-
old layer entirely and retained a standard ReLU activation after y1. This is demon-
strated in Figure 4.1, where a Cumulative Distribution Function (CDF) evaluation is
performed on two versions of W-AM. In the absolute error computation for the CDF
function, the geometry of the detector is accounted for by treating the ϕ dimension
as circular. In both instances, the models were trained for 250 epochs, which roughly
corresponded to a global minimum in the loss function, and a set batch size of 32.
Throughout this work, accepted WOMBAT models are graphically depicted in black,
while external algorithms are shown in red.

Figure 4.1: Cumulative Distribution Function Comparison for W-AM With and
Without the pT Threshold Layer

In this analysis, the CDF represents the empirical probability that the absolute
error is less than or equal to a given threshold. Denoting the set of absolute errors by
{qn}Nn=1, for a sample size of N, the normalized CDF is given by:

CDF(q) =
1

N

N∑
n=1

Θ(q − qn), (61)
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where Θ(x) indicates the Heaviside function. For sorted {qn}Nn=1 this simply becomes:

CDF(qn) =
n

N
, (62)

where qn is the nth smallest absolute error.
Following, the normalized area-under-the-curve (AUC) value is computed using a

trapezoidal approximation as follows:

AUC ≈ 1

maxn qn

N−1∑
k=1

qk+1 − qk
2

( k

N
+

k + 1

N

)
. (63)

By definition, a larger AUC indicates a steeper CDF increase, signifying fewer
errors. Evidently, including the pT threshold enables the model to better resolve jet
substructure, with a significant increase in accuracy in ϕ. By filtering low-energy
signals, the jet’s center becomes more well-defined, improving prediction accuracy.
The uniform sampling and finer granularity in ϕ make it more responsive to the pT

threshold. Given that there is no increase in latency or computational overhead when
a QActivation(ReLU) layer is replaced by the custom pT threshold function, including
it in W-AM leads to a significant improvement in predictive power.

Unlike the pT threshold layer, no optimal solution was found for the ϕ circular
wrapping function. Implementing it in the model extends the ϕ dimension, increas-
ing the number of convolutions per filter. While the stride can be adjusted to com-
pensate, this approach leads to reduced accuracy. In FPGAs, minimizing arithmetic
operations is crucial for reducing latency, making padded inputs, regardless of the
method used, unfavorable. An alternative approach was attempted by implementing
a custom circular Mean Squared Error (MSE) in W-AM for the ϕ outputs:

Circular Loss =
1

N

N∑
i=1

(
min(|ytrue,i − ypred,i|, 17− |ytrue,i − ypred,i|)

)2
, (64)

where N is the total number of samples, ytrue are the ϕ labels, and ypred are the ϕ

predictions.
This strategy modifies the model’s trainable parameters to account for ϕ wrapping

without any padding. However, as shown in Figure 4.2, this results in lower perfor-
mance. Partly, the greater complexity of the loss makes it difficult to minimize, but
also, due to the simplicity of the model, there is no strict constraint on the range of
predictions. This leads to unexpected behavior, such as a large loss, if the model pre-
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dicts a value close to, but slightly above 17. It is possible to impose an output value
limit through a sigmoid function, however, this adds to the model’s complexity and
is not optimal for FPGA implementation. Although a circular ϕ loss function aligns
with the detector’s geometry, a regular MSE was used to maximize performance.

Figure 4.2: Cumulative Distribution Function Comparison for W-AM With and
Without Circular Loss

3. Performance Overview of the WOMBAT Master and Appren-
tice Models

Due to the complexity of the models, W-MM generally outperforms W-AM. This
section details a comparison overview through numerous tests conducted on the vali-
dation data set.

Figure 4.3 shows that W-MM achieves a higher normalized AUC for both ϕ1 and
η1. Across all CDF analyses (Figures 4.1, 4.2, and 4.3), models consistently exhibit
lower average AUCs for ϕ than for η, regardless of the architecture. This trend is
expected due to the greater granularity in ϕ, which results in a larger phase space
for predictions. Stronger models reduce this discrepancy. For instance, W-MM attains
normalized AUCs of 0.98 for ϕ and 0.99 for η, outperforming W-AM, which scores 0.92

and 0.93, respectively.
In addition to the CDF score analysis, Figure 4.4 presents the distribution of pre-

dicted class counts relative to the ground truth. Optimal performance entails align-
ment between prediction and ground truth frequencies for each class; deviations indi-
cate prediction inaccuracies. For both η and ϕ, the W-MM model exhibits distributions
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Figure 4.3: Cumulative Distribution Function Comparison of W-MM and W-AM

closely matching the ground truth, with only minor deviations in the high-ϕ region.
These discrepancies stem from the cyclic nature of ϕ, which complicates classification
near the grid boundaries. Nonetheless, W-MM substantially mitigates these effects
compared to W-AM, which displays pronounced discrepancies at both low and high ϕ

values.
Moreover, W-AM frequently predicts the class value 6 more often than observed in

the ground truth for both η and ϕ. This reflects the model’s architectural limitations
which constrain its capacity to learn jet substructure, leading to bias toward mid-
range predictions that minimize loss. By independently processing η and ϕ through
the EDA architecture, W-MM effectively neutralizes the impact of class imbalance in
η on ϕ predictions. In contrast, W-AM lacks this decoupling mechanism, allowing the
central clustering of events in η to distort ϕ predictions. This is visually evident in
the similarity between the ϕ and η distributions produced by W-AM, particularly in
the edge behavior and the artificial peak at ϕ = 6.

Figure 4.5 presents spray plots of the predicted (ϕ1, η1) coordinates, revealing key
differences between W-MM and W-AM. Notably, model outputs are continuous, non-
integer values and only rounded post hoc; thus, given the large validation set, a uni-
form coverage within quantization limits across the η-ϕ grid is expected if predictions
are unbiased.

W-AM exhibits a central bias, with a concentration of predictions near the grid cen-
ter and sparse coverage at the boundaries. This indicates a failure to adequately learn
edge-region classes, consistent with the ground truth prediction count discrepancies
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Figure 4.4: η and ϕ Prediction Distributions Compared To Ground Truth for W-MM
and W-AM

shown in Figure 4.4. The lack of edge predictions reflects suboptimal generalization.
In contrast, W-MM not only achieves broader coverage but also exhibits distinct

structural formations aligned with integer-valued grid points. This indicates that W-
MM has internalized a latent discretization structure inherent to the labels, despite
receiving no explicit constraint to output integer values. A key factor enabling this
behavior is the use of sigmoid activation in the output layer, which normalizes the
continuous predictions which are then mapped to bounded physical coordinates.

Collectively, these findings indicate that W-MM more effectively captures both the
global class distribution and the underlying discrete structure of the labels compared
to W-AM. However, the architectural complexity and resource demands of W-MM ex-
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Figure 4.5: Raw Prediction Spray on η − ϕ Grid for W-MM and W-AM

ceed the constraints of the target FPGA, rendering it unsuitable for deployment. In
contrast, W-AM represents the highest-performing model that meets the hardware
limitations, making it the most viable option for FPGA implementation despite its
reduced predictive accuracy.

4. JEDI Architecture

The JEDI algorithm operates on the same TP input as WOMBAT, structured as a
14× 18 grid in η×ϕ space. Each CaloLayer1 TP region encodes the transverse energy
as a 10-bit fixed-point unsigned integer.

Before cluster formation, JEDI estimates the pileup multiplicity. The number of
active regions, P, is obtained through the equation:

P =

NCR−1∑
i=0

Θ
(
Eraw

i − Ethr

)
, (65)

where Eraw
i is the raw (input) ET of the TP region i, Ethr is the ET threshold, set to 30

GeV, similarly to WOMBAT, NCR is the number of regions, 252 for the 14×18 grid, and
Θ is the Heaviside step function.

The result for P is then quantized to a pileup bin, bp:

bp =
( P
14

)
, (66)
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which is used to compute Ei (which is equivalent to E(ηi, ϕi)) through:

Ei = max
(
0, Emax

i −∆i

)
, (67)

where ∆i is a pileup offset retrieved from a 2D look-up table indexed by (bp, E
raw
i ).

This table encodes pre-calibrated subtraction values optimized for each pileup bin
and energy level. Unlike JEDI, WOMBAT implements this correction using a fixed
∆i = 30 GeV, for all i. The 30 GeV threshold was determined within JEDI to be the
most effective on average for distinguishing signal from pileup across a wide range of
conditions.

After pileup subtraction, JEDI computes local energy sums over a sliding 3 × 3

window centered on each non-edge region. This mimics the ML convolution performed
by WOMBAT, which has a stride of 1 and a window size ranging from 3 × 3 to 5 × 5.
For each region i, the clustered energy, Si is given by:

Si =
∑

∆η,∆ϕ∈{−1,0,1}

E(ηi +∆η, ϕi +∆ϕ), (68)

where (ηi, ϕi) are the integer grid coordinates, and E(η, ϕ) denotes the pileup corrected
ET of the TP coordinates (η, ϕ). The resulting sum, Si, is truncated to a 10-bit unsigned
integer, consistent with the input representation. Values exceeding the 10-bit dy-
namic range are deterministically saturated, preserving stability in high-occupancy
conditions.

A veto condition is imposed on each jet candidate as:

Vi = (EC < Eseed) ∨ (EC < max
k

Ek), (69)

where EC denotes the transverse energy of the central region from the convolving 3×3

window, Ek represents the 8 neighboring regions, and Eseed is a fixed parameter, set
to 10 GeV.

Following the veto condition, the algorithm characterizes the local topology of the
3 × 3 energy deposits. For each cell m in the window, an “active” flag is generated if
two conditions are simultaneously met:

Am =

1, if Em > 30 GeV and Em > Si

16
,

0, otherwise.
(70)
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Notably, the division by 16 is realized by a bit-wise shift (>> 4), optimizing the latency
and resource usage of the operation.

Once 9 boolean flags Am are computed, they are reorganized into two 3-bit masks,
rη and rϕ, that encode the spatial distribution of the active cells along two geometrical
axes:

rη =
2∑

η=0

( 2∨
ϕ=0

Aη,ϕ

)
2η,

rη =
2∑

ϕ=0

( 2∨
η=0

Aη,ϕ

)
2ϕ.

The topologies encoded by (rη, rϕ) are then compared to a set of allowed bit patterns
shown in Table 1. If the (rη, rϕ) masks fall within one of these categories each, then
the 3× 3 region passes the veto condition.

Decimal Binary Meaning (bit positions)
b1 = 2 010 Only the middle row/column is active
b2 = 3 011 Top + middle rows/columns active
b3 = 6 110 Middle + bottom rows/columns active
b4 = 5 101 Top + bottom, but not middle
b5 = 7 111 All three rows/columns active

Table 1: Allowed Shape Masks for rη and rϕ in the JEDI Algorithm

JEDI then maps all calorimeter regions to a larger structure called a super-region
through a static and surjective mapping denoted by s = g(i). The 252 TP regions
are partitioned into 24 super-regions, each spanning 14 rows in η and 3 columns in ϕ.
Within each super-region, only the highest ET non-vetoed candidate is kept:

Js = max
i∈g−1(s)

{Si|Vi = 0, (rη, rϕ)allowed}, (71)

where Js denotes the highest ET allowed jet found in super-region s. Because g is
surjective and disjoint, exactly one jet slot per super-region is filled.

Following this, each of the 24 potential jet candidates is encoded as a fixed-width
jet word and stored in a 64-element array. The remaining 40 entries are filled with
zero-valued placeholders to conform to the input size requirements of a bitonic sorting
network, which operates optimally on arrays of length 2n. This padded array is subse-
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quently processed by a bitonic sorting network with a depth proportional to log2(64),
consisting of 6 hierarchical stages. Each stage comprises parallel compare-swap units
that recursively transform partially ordered bitonic sequences into a fully sorted ar-
ray, ordered by jet transverse energy. From the original 24 possible jets, only the top
6 are selected for output.

In the firmware implementation, similarly to WOMBAT, JEDI encodes the se-
lected jet’s transverse energy, Js, in the first 10 bits of the output word. The η position
occupies bits 11 through 18, while the ϕ position is stored in bits 19 through 26. Bit 27
is reserved for a potential flag, and the remaining bits, 28 to 31, are currently unused.

5. ML Implementation in FPGA Devices

To evaluate firmware compatibility, resource usage, and latency for online deploy-
ment, WOMBAT was implemented on Xilinx Virtex-7 FPGA devices. In particular,
the model in question is XC7VX690T-2FFG1927I [75] where:

• XC: Indicates that it is a Xilinx device.

• 7V: Signifies that it belongs to the Virtex-7 family.

• X690: Denotes the presence of approximately 690, 000 logic cells.

• T: Classifies the device as having high-speed serial transceivers.

• 2: Is the speed grade of the device, where a lower number is given to slower
operating speeds. The speed grade ranges from 1 (slowest) to 3 (fastest).

• FFG: It stands for Flip-Chip Fine-Pitch Ball Grid Array, which is a specific type
of Ball Grid Array (BGA) package used for integrated circuits.

• 1927: Represents the total number of pins (electrical connections) on the BGA
package.

• I: Stands for ”Industrial" which is the temperature grade associated with the
device (−40◦C to 100◦C).

The Virtex-7 FPGAs are manufactured using 28 nm process technology, which
allows for high transistor density, reduced power consumption, and enhanced com-
putational efficiency. This advanced fabrication process enables the XC7VX690T-
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2FFG1927I to integrate approximately 693,120 logic cells, 3,600 Digital Signal Pro-
cessing (DSP) slices10, and a robust interconnect architecture.

For WOMBAT and JEDI , FPGA algorithm design and implementation were car-
ried out using High-Level Synthesis (HLS) [76], which enables complex algorithms to
be developed in high-level languages such as C, C++, or SystemC, and then synthe-
sized into firmware for FPGA deployment. Essentially, HLS streamlines the FPGA
design process by automatically converting high-level algorithms into Register Trans-
fer Level (RTL) representations. RTL is a low-level hardware representation that
defines the flow of data between registers and the logic operations performed in
each clock cycle (CC). Unlike traditional Hardware Description Languages (HDLs)
like VHDL [77] or Verilog, which require manual specification of registers and logic
gates, HLS abstracts this process, automatically optimizing for area, power, and per-
formance. Key optimizations include loop unrolling, which replicates hardware re-
sources to increase parallelism, and pipelining, which allows overlapping execution
of multiple computations to improve latency.

Once HLS generates RTL, Vivado performs logic synthesis, placement, and rout-
ing, mapping the design to the FPGA’s configurable logic blocks (CLBs), digital signal
processing (DSP) slices, and block random access memories (BRAMs). Performance
is validated through timing analysis and hardware-in-the-loop (HIL) testing, ensur-
ing compliance with real-time constraints. To optimize WOMBAT’s data pipeline,
fixed-point arithmetic replaces floating-point operations, reducing DSP usage and im-
proving computational efficiency. Additionally, memory partitioning distributes data
across multiple memory banks to prevent bottlenecks. These optimizations enable
the FPGA to meet low-latency requirements critical for online deployment in the CMS
L1T.

In the case of WOMBAT, two FPGA designs were explored. When discussing the
implementation, there are three main interlinked algorithms:

• Main Algorithm: The core function, originally algo_unpacked, processes fully
unpacked TPs received from detector readout links. It subsequently forwards
the data through the WOMBAT ML trigger and processes the resulting output.

• Main WOMBAT Function: This function contains the WOMBAT ML algo-
rithm, where data is processed through a set of pre-defined and pre-trained lay-
ers with their associated weights and biases.

10A DSP slice is a dedicated computational block inside an FPGA optimized for high-speed arithmetic
operations, which are crucial for executing complex mathematical functions with minimal latency.
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• Parameters: This module, included within the WOMBAT function, defines the
configuration parameters necessary for HLS. Optimizing these parameters is
crucial for minimizing latency while ensuring stable CCs below 6.25 ns.

The first design approach pipelines the main algorithm while inlining the WOM-
BAT function, ensuring efficient execution at the top level with minimal overhead
from function calls. This method ensures a streamlined control structure, reduc-
ing scheduling complexity by minimizing function call overhead. At a lower level,
fine-grained parallelism optimizes ML computations by processing multiple neurons
concurrently. Inlining the ML model significantly simplifies control logic.

The second approach applies the DATAFLOW pragma at the main algorithm level.
A pragma is a compiler directive that provides optimization hints that influence how
the code is translated into hardware, without altering its functional behavior. This
required fully restructuring the main algorithm, as DATAFLOW requires a high-level
function that contains nothing but function calls. As a result, all logic implemented in
algo_unpacked was made into separate functions, which includes the call to WOM-
BAT, with each of these functions being pipelined separately. The dataflow pragma
ensures that these functions execute concurrently, without unnecessary stalls. This
restructuring maximizes parallelism, reduces latency, and allows WOMBAT to oper-
ate in a pipelined manner.

5.1 WOMBAT Firmware Implementation and Optimization Procedure

After training W-AM and W-ASM, an HLS4ML script was developed to convert the
pre-trained QKeras models into HLS implementations. HLS4ML is an open-source
Python library designed to translate ML models into FPGA-friendly HLS code, en-
abling efficient deployment of deep learning models on hardware [78]. In general,
the output includes a main model function optimized through the DATAFLOW pragma,
associated definitions and parameters, a utility folder containing data buffer and ML
layer implementations, and a separate folder storing the extracted weights from the
trained model. Although most of these files were used in the WOMBAT implemen-
tation, many required modifications. Additionally, the main algorithm had to be de-
veloped from scratch to handle data processing and ensure the model was executed
correctly, with inputs properly passed and outputs efficiently processed.

To convert W-AM from a TensorFlow model to a hardware trigger system, the
following procedure was followed:

• Stage 1: Initial Conversion from Python to HLS
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In the HLS4ML configuration, W-ASM and W-AM are loaded separately. Since
W-AM contains the pT threshold layer, the model needs to be read by the script us-
ing a custom object scope. To extract the weights from W-AM, during the conversion,
the threshold layer is extracted and replaced with a quantized ReLU. This shortcut
allows for the HLS4ML program to extract the model weights in an appropriate for-
mat. Even though the underlying structure is modified, the weights corresponding to
y2 in Chapter IV, Section 2.4 are associated with the pT threshold layer, not the sub-
stituted ReLU activation. As a result, the W-AM and W-ASM models are converted
in parallel: weights from W-AM are combined with the HLS code output from W-ASM
for firmware implementation. This approach requires a manual HLS implementation
of the pT threshold layer, which will be discussed in Stage 2 of the FPGA development
process.

The HLS4ML configuration was generated using the latency strategy that aims
to minimize inference delay. Each input, weight, bias, and output has a designated
precision assignment. The input layer is represented as a 10-bit unsigned integer,
while convolutional layers use 8-bit fixed-point precision for weights and biases, with
16-bit fixed-point outputs optimized for resource efficiency using a line-buffered im-
plementation. The dense and activation layers also produce 16-bit fixed-point out-
puts, ensuring consistency across the model. A reuse factor of 2 is applied globally to
balance parallel execution and FPGA resource utilization. For some layers, such as
the first convolution, the reuse factor was later manually set to 1 to reduce latency.
Essentially, a reuse factor defines how many times a hardware multiplier is reused
during computation, balancing resource usage and parallelism.

The model is configured for a 6.25 ns clock period, which corresponds to one-fourth
of the 25 ns bunch crossing interval of proton collisions at the LHC, allowing the
design to perform up to four processing steps within each collision cycle. To achieve
this, the parallel I/O configuration is used, enabling multiple data inputs and outputs
to be processed simultaneously within each CC. This approach optimizes data flow
for real-time decision-making, ensuring minimal latency while meeting the stringent
processing demands of the CMS Level-1 Trigger. The configuration variable part is
set to XC7VX690T-2FFG1927I, specifying the FPGA model used for implementation.

• Stage 2: HLS Custom Design and Optimization

Following the HLS4ML conversion, a lot of effort was taken to ensure efficient pro-
cessing of the TPs and output handling. Instead of relying on the base code produced
by HLS4ML, a high-level function (algo_unpacked) was developed to process fully
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unpacked TP data by converting raw input links into a structured format suitable for
FPGA implementation. The function extracts region-specific calorimetry information,
reshapes the data, and passes it to the WOMBAT algorithm for analysis. The outputs
are then mapped into temporary arrays with careful preservation of reserved control
bits, using HLS directives like pipelining, dataflow, array partitioning, and unrolling
to ensure efficient resource usage.

Post-processing begins immediately after WOMBAT outputs the jet centers by
converting the raw fixed-point outputs into a structured, 32-bit data word tailored
for downstream processing within the FPGA. Specifically, each fixed-point result is
first cast into an unsigned 16-bit value, from which the coordinates, indexed η and
ϕ, are extracted via the designated bit ranges discussed in Chapter IV, Section 4.
This precise bit allocation guarantees that the jet center information is aligned with
downstream data protocols.

Two high-level algorithmic approaches were evaluated:

• Approach 1: The algorithm was initially implemented as a monolithic function,
algo_unpacked, integrating data preparation, WOMBAT execution, and out-
put post-processing. Key synthesis pragmas included PIPELINE, UNROLL, and
LATENCY MAX/MIN, enabling loop unrolling and parallelism. WOMBAT was in-
lined to minimize function call overhead, promoting aggressive optimization.

• Approach 2: This variant modularizes the pipeline by isolating computational
stages into discrete functions, coordinated through a top-level controller anno-
tated with the DATAFLOW directive. Unlike Approach 1, WOMBAT is not inlined
but treated as a pipelined function block. Despite the increased overhead from
non-inlined execution, this strategy yielded superior performance, characterized
by reduced latency and no change in resource utilization.

The primary distinction lies in the pipelining granularity of WOMBAT. In both
designs, individual neural network layers are pipelined; however, Approach 2 initi-
ates pipelining at the top-level WOMBAT function, leading to more efficient resource
scheduling and improved timing closure. Although the high-level algorithm in the
second approach utilized the DATAFLOW pragma to enable concurrent execution, all
auxiliary data processing is structured with explicit data dependencies that enforce a
fixed execution order. This ensures deterministic behavior without introducing unin-
tended parallelism.

To optimize resource usage and execution timing, the reuse factor of each layer
was manually set, as well as the buffer size and partitions. A higher reuse factor
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reduces resource usage but increases latency, while a lower reuse factor consumes
more resources to achieve faster execution.

For some computationally expensive layers that rely on convolution and dense
operations, the reuse factor was set to 2, and 1 for the remaining layers. Since W-AM
features two convolutions, the FPGA available resources allowed for one to have a
reuse factor of 1.

The original HLS4ML-generated code included large statically defined buffers
with suboptimal partition schemes. In particular, some partitions contained mostly
zeros, and substantial portions of the allocated memory went unused. This inefficient
memory layout not only led to unnecessary resource consumption but also introduced
excessive memory access latency. In some cases, the inflated buffer size and poor uti-
lization even caused synthesis failures due to routing congestion or resource overuse.
By manually compacting these buffers and enabling their reuse across multiple op-
erations, both memory footprint and access latency were significantly reduced. This
restructuring led to a measurable performance improvement, cutting overall latency
by approximately 20 CCs and enabling successful timing closure under the 6.25 ns
constraint.

Both approaches were optimized to achieve the lowest possible clock cycle period
and latency. This design requirement arises from the 25 ns interval at which proton
bunch crossings occur at the CMS. To accommodate data processing within a 25 ns
period, WOMBAT’s FPGA target period is set to 6.26 ns, translating to a rate of about
160 MHz. This choice allows exactly four CCs to fit within each collision window,
ensuring that data can propagate through the pipeline without the risk of missing the
next collision’s input. To force the pipeline to complete its combinational processing
and register updates within 4 cycles, the top-level function, algo_unpacked, contains
the pragma LATENCY MIN=4 and, depending on the approach, the top-level pragma
PIPELINE is set to 4. The final implementation achieved a nominal path delay of
5.79 ns, which translates to the time it takes for the signal to travel through the
longest path in the circuit under typical conditions. The additional 1.69 ns is a safety
margin added to account for uncertainties such as process variations, temperature
changes, or other real-world factors that might cause the actual delay to be longer
than expected. This conservative margin ensures that even if the delay increases
slightly under less-than-ideal conditions, the design will still meet the target 6.25 ns
clock period reliably.

Formally, latency refers to the delay between the arrival of a data packet at the
beginning of the processing pipeline and the time its corresponding output is pro-
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duced. The DATAFLOW design associated with Approach 2, exhibited a fixed latency of
22 clock cycles, translating to 137.5 ns at 6.25 ns per clock period. In comparison, the
algorithm in Approach 1 achieved a latency of 24 ns. For both designs, the pipeline’s
initiation interval is set to 4 cycles, therefore, new data sets can be injected every 25

ns. This means while any given data packet takes 22-24 cycles to traverse the WOM-
BAT algorithm, the pipeline is capable of overlapping computation such that it can
accept fresh inputs at each 25 ns boundary.

Once all functions are pipelined and loops unrolled, HLS offers numerous ways to
constrain the latency, such as the pragma LATENCY MAX. At the expense of resource
usage, it is possible to manually set a maximal latency of execution at any level in
the system. However, setting too low of a constraint forces the combinational logic
between pipeline registers becomes more complex and longer, thus increasing the
critical path delay. As a result, the achievable clock period can rise above the 6.25 ns
target meaning that the processing can’t be completed within the 25 ns window. For
example, constraining the latency to 20 in Approach 2 leads to a clock period of 9.804
ns, which is not acceptable.

6. FPGA Implementation of JEDI

Unlike WOMBAT, which leverages the HLS4ML framework, the JEDI algorithm
was manually implemented in HLS and synthesized for the same FPGA model, XC7VX690T-
2FFG1927I. The architectural details outlined in Chapter IV, Section 4, are derived
directly from the FPGA implementation and are further elaborated in this section
from a technical and hardware-centric perspective.

In JEDI, every processing stage is optimized using HLS directives to exploit the
FPGA’s inherent parallelism and ensure deterministic latency. Key loops-such as
those responsible for jet candidate preparation, bit-level data packing, and sorting-
are fully unrolled via the UNROLL pragma, thereby enabling simultaneous execution
across all candidate channels. In addition, arrays are reshaped and partitioned to
provide concurrent access to data elements, minimizing latency and avoiding memory
access bottlenecks.

The design employs a 64-element bitonic sorting network, achieved by zero-padding
24 valid jet words to a full array of 64 elements. The sorter is created with a depth pro-
portional to 6 (or log2(64)), which partitions the network into six hierarchical stages.
Each stage consists of parallel compare-swap units, implemented using efficient 10-
bit subtract-and-multiplexer (MUX) circuits, that recursively merge bitonic sequences
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into a fully ordered output. This custom sorting engine is deeply pipelined so that,
after the pipeline has filled (approximately 21 − 24 cycles), the network can process
one new set of inputs every CC.

Furthermore, auxiliary arithmetic operations such as the 3×3 regional energy
summing are handled by a fully unrolled adder tree that guarantees a saturating
output within the 10-bit range. The function that counts active bits in a regional
threshold mask employs an HLS pipeline directive (with an initiation interval of 4

cycles, similar to WOMBAT). These operations, along with extensive bit-slicing for
output word formation, culminate in the assembly of compact 32-bit output words.
Each word encodes jet transverse energy, spatial position, and reserved fields, and is
eventually concatenated into 128-bit GT links for transmission to subsequent trigger
logic.

7. Analysis Through the CMS Software

The CMS Software (CMSSW) is the official software framework used by the CMS
experiment for event reconstruction, simulation, and data analysis. It provides a
modular, C++-based environment integrated with Python configuration, enabling scal-
able processing of detector data within a consistent and reproducible infrastructure.

For trigger systems, performance is primarily evaluated using two key metrics:
trigger efficiency and trigger rate. Mathematically, the efficiency per transverse mo-
mentum, ϵ(pT ), can be represented as follows:

ϵ(pT ) =
NW-OFFLINE(pT )

NOFFLINE(pT )
, (72)

where NW-OFFLINE(pT ) denotes the number of events per pT bin that pass both the
WOMBAT algorithm and the offline selection, and NOFFLINE(pT ) is the total number
of events per pT bin that pass the offline selection. To evaluate the trigger efficiency,
H → bb̄ MC samples were used, which were generated through the algorithm dis-
cussed in Chapter III, Section 1.

For an event to pass both offline selection and the WOMBAT trigger, the following
set of requirements must be met:

• Must pass a minimum pT threshold which is proportional to the calculated ET

multiplied by a pre-defined scale factor.

• Must have sufficient activity in neighboring regions to the jet’s center with pT >

30 GeV and > 6.25% of the jet’s total ET .
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• Must not be vetoed by electromagnetic or tau-specific region flags.

• Each jet must be geometrically matched to an offline AK8 jet passing within ∆R
< 0.4. The AK8 algorithm provides a high-resolution reference for jet structure,
using full detector information to reconstruct large-radius jets with detailed sub-
structure. Its accuracy makes it ideal for validating and matching trigger-level
jets in boosted topologies like H → bb̄.

• The matched offline jet must satisfy the analysis-level selection: pT above a
configurable threshold, presence of exactly two SoftDrop subjets, and at least
one associated b-hadron per subjet.

In this analysis, WOMBAT is directly compared to an existing L1T boosted H → bb̄

tagger, known as Single Jet 180. This algorithm is implemented in the Calorimeter
Layer 1 and serves as a seed to the HLT. If an event passes the selection criteria of
Single Jet 180, a trigger bit is set and the corresponding L1 jet object is passed to
the HLT. This initiates a specific HLT path, where more detailed reconstruction and
selection are performed based on the L1-provided information. As the name Single Jet
180 suggests, the algorithm applies predefined selection criteria to identify a single
boosted H → bb̄ jet in an event, achieving an efficiency greater than 0.8 for jets with
pT > 180 GeV. The clustering algorithm forms jets by aggregating energy deposits
from a 9 × 9 grid of trigger towers in η − ϕ space, with pileup subtraction performed
using energy estimates from a surrounding band adjacent to the jet area. For this
analysis, the Single Jet 180 trigger uses the same TP granularity as WOMBAT and
needs to satisfy the same conditions for an event to be considered a boosted H → bb̄

jet.
In addition to a trigger efficiency study, the WOMBAT algorithm was evaluated

for trigger rates and compared to the Single Jet 180 performance. Mathematically,
the total rate calculation can be written as:

R(pT ) =

(
N≥pT (i)

Ntotal

)
×

(
Nh0

Nh1

)
×

(
40× 106

103

)
[kHz]. (73)

In Equation 73, the first term, N≥pT
(i)

Ntotal
represents the cumulative count of events above

a threshold pT (i) normalized by the total number of events, Ntotal. N≥pT is obtained
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by:

N≥pT (i) =

Nbins∑
j=i

Nj, (74)

where Nj represents the number of events falling into the jth bin of the distribution
histogram corresponding to a specific transverse momentum interval [pjT , p

j
T +∆pT ].

The second term in Equation 73, Nh0

Nh1
serves as a correction factor to account for

differences in the overall normalization between WOMBAT and Single Jet 180. In
particular, Nh0 and Nh1 denote the total event counts in the histograms correspond-
ing to the WOMBAT algorithm and the Single Jet 180 trigger, respectively. Finally,
the coefficient 40×106

103
is a conversion factor that translates the normalized event frac-

tion into an absolute trigger rate in kHz. The numerator reflects the nominal bunch
crossing frequency of 40 MHz at the LHC, which is divided by 103 for conversion into
kHz.

For the trigger rates analysis, ZB data was used, as it provides an unbiased sample
of events selected solely on the presence of a beam crossing, independent of physics
activity. This dataset is ideal for rate studies since it reflects the true input conditions
to the L1T. The ZB data was accessed using the CMSSW framework and processed
through the l1Ntuple producer. To retrieve and analyze this dataset, the CRAB
system was used to submit grid jobs for data skimming and ntuple production. The
resulting ROOT files were merged and used as input to construct rate histograms
corresponding to different trigger configurations.
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Chapter V: Trigger Rate, Efficiency, and FPGA Im-
plementation Results

This chapter presents a detailed performance evaluation of WOMBAT’s Master
and Apprentice models in the context of L1 trigger suitability. To qualify for online
deployment, a trigger must satisfy the following key criteria:

• High Efficiency in Relevant Regime: The trigger must efficiently select tar-
geted physics signatures, such as boosted jet topologies, by resolving substruc-
ture and tagging relevant processes within the desired kinematic regime.

• Low Rate and Pileup Resistance: In addition to high efficiency, the trigger
must suppress background and low-relevance events to maintain a low L1A rate,
ensuring resilience to high pileup conditions, especially during the upcoming
HL-LHC era.

• Acceptable Firmware Resource Usage and Processing Latency: The de-
sign must conform to strict FPGA resource limits and latency requirements im-
posed by the L1T system, delivering decisions within the allowed time budget
for real-time operation.

1. Trigger Primitives Displays

As outlined in Chapter III, Section 2, the event displays visualize TPs originating
from the HCAL and ECAL, which constitute the primary inputs to the WOMBAT
trigger. TPs represent localized energy deposits derived from calorimeter readout
signals and are produced in real-time by dedicated hardware or firmware systems
known as trigger primitive generators (TPGs). The event displays further include jet
centers predicted by WOMBAT, alongside the offline AK8 jet clustering and tagging
results that serve as a reference for evaluating performance.

For W-MM, the predictions, based on visual TP displays, can be broadly catego-
rized into the following groups:

• Good Matches: In these events, WOMBAT predicts jet centers that align with
the same trigger regions as those identified by the offline AK8 algorithm across
all clusters.

• Semi-Good Matches: This category includes events where one or more WOMBAT-
predicted jet centers exhibit a slight spatial offset from the corresponding AK8
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jets. Despite these deviations, the majority of these jets still satisfy the ∆R < 0.4

matching criterion, and the mismatch is primarily visual in nature.

• Poor Matches: Events in this group are characterized by significant discrepan-
cies between WOMBAT and AK8 predictions. Only some, or in some cases, none,
of the WOMBAT-predicted jet centers satisfy the ∆R < 0.4 condition relative to
the AK8 jets.

• Jet Multiplicity Mismatch: This group encompasses all events in which the
number of jets predicted by WOMBAT differs from the number identified by the
AK8 algorithm, irrespective of spatial agreement (∆R). Representative scenar-
ios include:

– AK8 identifies 4 jets, WOMBAT predicts 3 or 2;

– AK8 identifies 3 jets, WOMBAT predicts 2;

– AK8 identifies 2 jets, WOMBAT predicts 3;

– AK8 identifies 1 jet, WOMBAT predicts 2 or 3.

In the case of W-AM, all categories above apply with the constraint that W-AM
always predicts only 2 jets. For an organized collection of TP displays, see Appendix
F. Moreover, control plots for all trigger systems discussed, along with accompanying
commentary, are provided in Appendix E.

1.1 WOMBAT Master Model TP Displays

Figures 5.1 and 5.2 present events classified as “Good Matches,” where the WOM-
BAT trigger successfully identifies three jets originating from a H → bb̄ decay. The
predicted jet centers exhibit close spatial agreement with those reconstructed by the
offline AK8 algorithm. TP cluster numbering corresponds to WOMBAT’s output or-
dering, which is significant for interpreting prediction behavior. Notably, the model
consistently resolves the leading and subleading jets but exhibits reduced accuracy in
localizing the third cluster. In Figure 5.1, the third jet is slightly displaced toward the
leading jet, suggesting reduced confidence in its localization, which can lead to larger
inaccuracies with variations in TP structure.

Additionally, Figure 5.1 highlights the model’s handling of ϕ wrapping near the
grid boundaries. WOMBAT demonstrates the ability to resolve substructure and ac-
curately predict jet locations even in the ϕ ≈ 0 (or ϕ ≈ 2π) region.
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Figure 5.1: W-MM Good Match TP
Display - Event 2687

Figure 5.2: W-MM Good Match TP
Display - Event 2995

Figure 5.3: W-MM Jet Multiplicity
Mismatch TP Display - Event 689

Figure 5.4: W-MM Jet Multiplicity
Mismatch TP Display - Event 4716

Although W-MM accurately predicts the jet multiplicity in most events, discrep-
ancies remain. In Figure 5.3, WOMBAT predicts two jets, while AK8 reconstruction
identifies three, potentially reducing the trigger rate but also lowering efficiency. Con-
versely, Figure 5.4 illustrates an event where WOMBAT predicts three jets despite
only two being reconstructed offline, likely increasing trigger rate. Despite efforts to
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mitigate such mismatches through architectural and hyperparameter optimization,
these inconsistencies persist in the trigger algorithm.

Overestimation of jet multiplicity often results from TP readouts that randomly
mimic the calorimetric signature of a boosted H → bb̄ decay. Lacking full trigger
tower (TT) granularity, WOMBAT struggles to resolve jet substructure as effectively
as offline algorithms. Similarly, underestimation of jet multiplicity typically occurs in
high-noise environments, where widespread calorimeter activity leads WOMBAT to
misidentify relevant jets as noise, especially if the jet’s center falls within the |η| ≥ 2.4

region.

1.2 WOMBAT Apprentice Model TP Displays

Unlike W-MM, W-AM consistently predicts up to the second-leading H → bb̄ jets.
While this limits trigger efficiency and rate, it ensures model simplicity compatible
with FPGA deployment. Although a CNN architecture supports additional jet out-
puts, W-AM’s limited trainable parameters proved insufficient to learn the latent fea-
tures necessary for reliable three-jet predictions.

Figure 5.5: W-AM Good Match TP
Display - Event 3360

Figure 5.6: W-AM Semi-Good Match TP
Display - Event 1186

Due to knowledge distillation from the larger WOMBAT Master model, W-AM
learns the ϕ-wrapping behavior despite lacking the custom ϕ-wrapping layer. Figure
5.6 illustrates this behavior, with the first jet output correctly identifying an H → bb̄
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event near ϕ ≈ 2π (or ϕ ≈ 0). This suggests that W-AM captures angular periodic-
ity implicitly. The learned representation generalizes well, even under architectural
constraints.

Unlike W-MM, W-AM’s predictions are more sensitive to variations in the underly-
ing structure of the calorimeter TPs. As shown in Figure 5.6, the predicted position of
jet 2 is noticeably displaced toward jet 1 in η, which has a higher transverse momen-
tum (pT = 558.6 GeV) relative to jet 2 (pT = 305.4 GeV). Despite satisfying the ∆R < 0.4

matching criterion, W-AM’s second prediction is biased toward the more energetic jet
due to this imbalance.

For comparison, Figure 5.5 presents a lower-pT event with jets 1 and 2 having pT

of 244.9 GeV and 183.4 GeV, respectively. In this range (∼ 150 − 300 GeV), increased
substructure facilitates more accurate jet identification. However, as partons become
increasingly collimated at higher pT (see Figure 5.6), W-AM becomes more prone to
misidentifying H → bb̄ decays, especially when there are large pT imbalances among
the jets in an event. Furthermore, since W-AM operates on CaloLayer1 TP regions,
which lack the granularity of TTs, its spatial resolution could be insufficient to resolve
jet substructure in high-density environments. These phenomena, among others, con-
tribute to reduced efficiency in the high-pT regime.

Figure 5.7: W-AM Jet Multiplicity
Mismatch TP Display - Event 830

Figure 5.8: W-AM Jet Multiplicity
Mismatch TP Display - Event 2994

The primary limitation on W-AM’s trigger performance arises from its two-jet-per-
event constraint. This is demonstrated in Figures 5.7 and 5.8, which show events
with three and four jet clusters, respectively. Although WOMBAT identifies two jet
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centers satisfying the ∆R < 0.4 matching criterion in both cases, overall efficiency
remains low due to the presence of additional unmatched jets. As detailed in Chapter
V, Section 3, an analysis of jet multiplicity based on leading-order offline jet pT reveals
a theoretical upper limit to W-AM’s trigger efficiency, most pronounced in the high-pT
regime.

2. WOMBAT Rate Analysis

WOMBAT performance is evaluated by comparing the rates of W-AM and W-MM
to the Single Jet 180 trigger, as well as the JEDI algorithm (see Chapter V, Section 5).
Optimal L1T design aims to minimize rate while maximizing efficiency. Rates were
derived from 2023 ZB data corresponding to an integrated luminosity of 0.64 fb−1.
Using CRAB, events were processed through the WOMBAT trigger paths, and rates
for W-AM, W-MM, Single Jet 180, and JEDI were recorded.

L1T Algorithm pT at 1 kHz

Single Jet 180 187.4± 5.50 GeV
W-MM 146.8± 5.50 GeV
W-AM 140.4± 5.50 GeV

Table 2: Summary of pT Values Associated with a 1 kHz Trigger Rate

Figures 5.9 and 5.10 present the trigger rates, R(pT ), of W-MM and W-AM, respec-
tively, in comparison to the Single Jet 180 algorithm. The shaded regions encompass
events that fall below the comparison threshold of 1 kHz. Both WOMBAT models
demonstrate lower trigger rates than Single Jet 180 at this threshold, indicating
improved background suppression. This reduction is particularly significant in the
high-rate regime, where efficient rejection of less physics-relevant jets is essential for
maintaining L1T (and DAQ) system performance.

The 1 kHz threshold is chosen to reflect realistic per-trigger rate constraints within
the CMS L1T architecture. While the total L1 bandwidth is on the order of 100 kHz,
individual trigger paths typically operate in the 1−10 kHz to accommodate bandwidth
sharing among multiple physics triggers and to preserve headroom for calibration and
control paths. Evaluating WOMBAT against a 1 kHz benchmark provides a practical
and stringent test of its suitability for deployment in real-time systems constrained
by latency, FPGA resource limits, and global rate ceilings.

The numerical results corresponding to the trigger rates of W-MM, W-AM, and
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Figure 5.9: W-MM and Single Jet 180
Trigger Rate vs. Offline pT With

R(pT ) = 1 kHz Threshold

Figure 5.10: W-AM and Single Jet 180
Trigger Rate vs. Offline pT With

R(pT ) = 1 kHz Threshold

Single Jet 180 are summarized in Table 2. The table reports the jet pT at which each
algorithm reaches a trigger rate of 1 kHz.

WOMBAT models achieve the 1 kHz trigger rate at significantly lower jet pT

thresholds compared to the Single Jet 180 algorithm. The Single Jet 180 requires
a jet pT of 187.4 GeV to stay within the imposed 1 kHz rate limit, whereas the WOM-
BAT variants W-MM and W-AM reach this rate at just 146.8 GeV and 140.4 GeV,
respectively. This represents a reduction of 40.6 GeV for W-MM and 47.0 GeV for W-
AM. These improvements highlight the enhanced background rejection capabilities of
WOMBAT, allowing effective operation at lower pT while meeting the rate constraint.

As shown in Figure 5.9, above pT ≈ 300 GeV, the W-MM rate exceeds that of the
Single Jet 180 trigger. While Single Jet 180 drops below 10−1 kHz near pT = 300 GeV,
W-MM reaches this level around 400 GeV. This discrepancy is partially due to W-MM’s
capacity to tag up to three boosted H → bb̄ candidates. In events with jet multiplicity
mismatches, where W-MM predicts three jets while offline reconstruction identifies
less (see Figure 5.4), the rate increases. Such over-predictions are more pronounced
above 200 GeV, where energetic jets generate complex TP patterns that may be mis-
interpreted by the ML model as additional Higgs-like jets. Unlike traditional algo-
rithms, ML-based triggers are more sensitive to subtle features in the input, making
them more prone to these classification ambiguities.
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Since W-AM uses a fixed jet multiplicity of 2, it yields a lower trigger rate than
Single Jet 180 across all pT values. While reduced jet multiplicity is not inherently
required to lower trigger rates, in this case, it is correlated with rate suppression for
both W-AM and W-MM. While there are multiple strategies for reducing trigger rates,
such as adjusting selection thresholds, applying tighter isolation, or incorporating
refined object definitions, constraining multiplicity proves effective in the WOMBAT
models. Unlike W-MM, W-AM does not overpredict jet counts in the pT > 200 GeV
regime, leading to fewer false positives. In terms of rate alone, W-AM is the most
selective. However, the trigger rate does not directly reflect signal acceptance. In
this respect, W-MM and Single Jet 180 outperform W-AM, as the fixed multiplicity in
W-AM can lead to underprediction of boosted H → bb̄ decays.

3. WOMBAT Efficiency Analysis and Jet Multiplicity Distribu-
tion

While rate comparisons provide insight into background suppression, they do not
fully capture a trigger’s physics performance. Signal efficiency, ϵ(pT ), is a critical com-
plement to rate in evaluating L1T algorithms. For H → bb̄ tagging, the efficiency
curve quantifies a trigger’s ability to correctly identify jets as a function of jet pT ,
while the rate reflects the frequency at which events are accepted in a realistic colli-
sion environment. Given the low production cross-section of H → bb̄ relative to QCD
multijet backgrounds, efficiency is evaluated using MC signal samples, as detailed in
Chapter III, Section 1.

L1T Algorithm pT Threshold ϵ(pT ) at R(pT ) = 1 kHz ϵ(pT ) at R(pT ) = 1 kHz
Condition: ∆R < 0.4 Condition: ∆R < 0.8

Single Jet 180 187.4± 5.50 GeV 0.91+0.03
−0.04 0.95+0.02

−0.03

W-MM 146.8± 5.50 GeV 0.71+0.05
−0.05 0.89+0.03

−0.04

W-AM 140.4± 5.50 GeV 0.53+0.06
−0.06 0.73+0.05

−0.05

Table 3: Summary of pT Values Associated with a 1 kHz Trigger Rate on Full
Evaluation Dataset

Table 3 shows a summary of the efficiency, ϵ(pT ), at the pT threshold associated
with a rate of 1 kHz for each algorithm. To demonstrate the effect of the ∆R matching
condition, the results when imposing ∆R < 0.8, in addition to the more stringent
condition of ∆R < 0.4, are presented. Figure 5.11 visualizes the ∆R condition using
three offline reconstructed jets with associated predictions at ∆R = 0.02, 0.40, 0.80.
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For this particular event, W-MM and W-AM predict all jets within ∆R < 0.40 (see
Appendix A for Figures A.3 and A.2). For illustration purposes, the predicted jets
shown were manually placed and do not reflect actual WOMBAT outputs.

Figure 5.11: ∆R Matching Condition Visualization for ∆R Separations of 0.80, 0.40,
and 0.02

As shown in Table 3, both W-AM and W-MM demonstrate the capacity to accept
lower-pT events compared to the baseline Single Jet 180 trigger when operating under
the R(pT ) ≤ 1 kHz rate constraint. While their absolute efficiencies near the threshold
are lower, the presence of a non-zero ϵ(pT ) at reduced pT allows for extended coverage
into kinematic regions that remain inaccessible to the Single Jet 180 trigger. This
characteristic is particularly advantageous for capturing a wider spectrum of boosted
H → bb̄ processes, especially those occurring below the pT threshold enforced by Single
Jet 180.

The W-MM algorithm exhibits performance comparable to the Single Jet 180 trig-
ger, due to its EDA architecture, which efficiently encodes global event-level TP fea-
tures and jet substructure. Its capacity to predict up to three jets enables high cor-
respondence with AK8 offline reconstructed jets. For a target rate of 1 kHz, W-MM
achieves a pT threshold of 146.8 GeV, granting access to the 146.8 − 187.4 GeV region,
populated by hadronic W/Z decays, moderate-pT QCD jets, and boosted H → bb̄ events.
This region remains inaccessible to Single Jet 180 under the same rate constraint.
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Figure 5.12: W-MM and Single Jet 180
Trigger Efficiency vs. Offline pT With

ϵ(pT ) Threshold for ∆R < 0.4

Figure 5.13: W-AM and Single Jet 180
Trigger Efficiency vs. Offline pT With

ϵ(pT ) Threshold for ∆R < 0.4

Figure 5.14: W-MM and Single Jet 180
Trigger Efficiency vs. Offline pT With

ϵ(pT ) Threshold for ∆R < 0.8

Figure 5.15: W-AM and Single Jet 180
Trigger Efficiency vs. Offline pT With

ϵ(pT ) Threshold for ∆R < 0.8

The efficiency profile of the W-AM model, illustrated in Figure 5.13, exhibits a peak
at ϵ(pT ) ≈ 0.75, followed by a pronounced decline in the high transverse momentum
regime (pT > 650 GeV). This drop is mainly attributed to the rising jet multiplicity in
the MC efficiency evaluation dataset, as demonstrated in Figure 5.16. Specifically, for
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events containing leading order jets with pT > 600 GeV, over 34.3% of events have a jet
multiplicity > 2. Since W-AM is architecturally constrained to predict exactly two jets
per event, its performance deteriorates in scenarios where the reconstructed jet mul-
tiplicity exceeds this fixed topology. In such cases, the model can at best recover 2

3
of

the event content for three-jet topologies and only 1
2

for events with four jets, thereby
imposing a theoretical upper bound on efficiency. This limitation results in a system-
atic underperformance at high pT , where multi-jet configurations become increasingly
prevalent, causing the efficiency curve to decline rather than plateau. The effect is
not due to a failure in inference per se, but rather a structural mismatch between
the model’s output dimensionality and the true event complexity in this kinematic
regime.

Figure 5.16: MC Evaluation Dataset Jet Multiplicity per Event Leading Order (LO)
Jet pT

Using the values from Figure 5.16, the maximal efficiency in each pT bin is given
by:

ϵmax(pT ) = χ1(pT ) + χ2(pT ) +
2

3
χ3(pT ) +

1

2
χ4(pT ), (75)

where χi(pT ) denotes the fraction of events with jet multiplicity i in a given pT bin.
This expression represents the theoretical upper bound for W-AM efficiency, ac-

counting for its dependence on jet multiplicity. This constraint explains the concave-
down shape observed in the W-AM efficiency curve (Figure 5.13). To illustrate this,
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Figure 5.17: Efficiency Curve of W-AM and Single Jet 180 Compared to the Maximal
Theoretical Efficiency for W-AM

Figure 5.17 plots the corresponding upper bound. As this limit declines with increas-
ing pT , so too does W-AM’s efficiency. Notably, for pT > 300 GeV, even ideal W-AM
predictions cannot match the efficiency of Single Jet 180, which is not subject to this
multiplicity constraint. While W-MM also has a theoretical upper bound resulting
from events with jet multiplicities of 4, it proves insignificant given the fraction of
4-jet events ranges from 0.004 for pT = [100.0, 140.0) GeV to 0.069 for pT = [820.0, 900.0)

GeV.11

Consequently, evaluating W-AM efficiency over the full dataset can obscure its
true performance. To address this, Chapter V, Section 4, re-evaluates all algorithms
using only events with exactly two jets.

Moreover, W-AM’s high-pT efficiency degradation is compounded by the training
and evaluation strategy, which intentionally prioritizes low-to-moderate pT regions
to reflect the dominant phase space of LHC collisions. As shown in Figure 5.18, the

11Quantitatively, the most restrictive upper bound on W-MM arises in the pT = [820.0, 900.0) GeV
bin, where the maximal efficiency is limited to ϵmax(pT ) = 0.98 due to the contribution of 4-jet events.
However, this constraint is not statistically significant, as it lies well within the uncertainty associated
with the efficiency axis.
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MC datasets are densely populated in the 150-350 GeV range, aligning with regions
where efficient trigger rate control is most crucial. While this ensures optimal per-
formance in the most statistically relevant regions, it limits W-AM’s exposure to, and
generalization in, high-pT regimes with nontrivial jet substructure and multiplicity.
Although both W-MM and W-AM were trained on this distribution, W-MM’s larger
parameter space enables it to capture high-pT features despite their rarity.

Figure 5.18: Training H → bb̄ MC Dataset Jet pT Distribution

When the matching criterion is relaxed from ∆R < 0.4 to ∆R < 0.8, the W-AM
model exhibits a similar overall efficiency trend, but with higher ϵ(pT ) values, as
illustrated in Figure 5.15. This increase is expected, as the looser matching con-
dition results in a greater number of WOMBAT-tagged jets being considered cor-
rectly matched. Similarly, W-MM and Single Jet 180 retain their characteristic ef-
ficiency profiles under the relaxed condition, but with slightly elevated ϵ(pT ). In
practical terms, a ∆R < 0.8 condition permits matches within approximately two
CaloLayer1 TP regions from the offline-reconstructed jet center (see Figure 5.11), ef-
fectively broadening the spatial tolerance of the matching process.

While the ∆R < 0.8 condition yields higher ϵ(pT ) values by allowing more WOM-
BAT tagged jets to be considered matched, it reflects a looser spatial association and is
therefore less suitable for rigorous performance evaluation. In contrast, the original
∆R < 0.4 criterion imposes a stricter correspondence, roughly aligning with the size
of a single CaloLayer1 TP region around the offline jet center. This tighter matching
enhances the sensitivity of the efficiency curve to spatial and energetic biases, pro-
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viding a more accurate view of trigger behavior. Nevertheless, the ∆R < 0.8 results
remain informative for understanding model performance in contexts where broader
spatial resolution or relaxed deployment conditions are relevant.

4. WOMBAT Efficiency Analysis on Events with Fixed Jet Mul-
tiplicity of 2

Given the theoretical efficiency constraints of W-AM (and of W-MM in the pres-
ence of 4-jet topologies), performance was reevaluated using a subset of the original
MC efficiency dataset restricted to events with exactly 2 jets. This isolates the mod-
els’ behavior under controlled conditions, eliminating the impact of mismatched jet
multiplicities.

L1T Algorithm pT Threshold ϵ(pT ) at R(pT ) = 1 kHz ϵ(pT ) at R(pT ) = 1 kHz
Condition: ∆R < 0.4 Condition: ∆R < 0.8

Single Jet 180 187.4± 5.50 GeV 0.96+0.06
−0.05 1.00+0.00

−0.02

W-MM 146.8± 5.50 GeV 0.81+0.05
−0.06 0.98+0.02

−0.03

W-AM 140.4± 5.50 GeV 0.53+0.07
−0.07 0.85+0.03

−0.04

Table 4: Summary of pT Values Associated with a 1 kHz Trigger Rate on Subset of
the Evaluation Dataset Containing Only Events with Jet Multiplicity of 2

The results in Table 4 demonstrate improved performance of both W-AM and W-
MM when evaluated on events containing only two H → bb̄ jets rather than the entire
MC dataset. As with the previous efficiency study, the analysis was done following
the formula outlined in Equation 72. Given the high efficiency of W-MM and Single
Jet 180 when tested on the entire dataset, with ϵ(pT > 300 GeV) > 0.9, improved
performance is expected under reduced event complexity. This is confirmed in Figure
5.20, where Single Jet 180 maintains ϵ(pT ) ≈ 1.0 across the entire pT range, while W-
MM reaches this efficiency at approximately 300 GeV. W-MM’s slightly lower efficiency
at pT < 300 GeV leads to a suppressed rate, thereby decreasing the pT threshold
required to remain within the 1 kHz limit.

Figure 5.20 illustrates an overall improvement in W-AM trigger efficiency, most
notably at high pT . Instead of the concave-down behavior seen in Figure 5.13, the
W-AM trigger efficiency generally increases with an increase in pT . This is because
the high-pT events (pT > 600 GeV) were populated with 3-jet and 4-jet events, with ≈
30%−50% of events being in this category, as shown in Figure 5.16. While eliminating
these events increases statistical uncertainty, it yields a more accurate performance
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metric for W-AM, which is constrained to two jets per event.

Figure 5.19: W-MM Trigger Efficiency vs.
Offline pT on Events with Jet Multiplicity

of 2

Figure 5.20: W-AM Trigger Efficiency vs.
Offline pT on Events with Jet Multiplicity

of 2

Figure 5.21: W-MM Trigger Efficiency vs.
Offline pT on Events with Jet Multiplicity

of 2 for ∆R < 0.8

Figure 5.22: W-AM Trigger Efficiency vs.
Offline pT on Events with Jet Multiplicity

of 2 for ∆R < 0.8

Notably, no significant performance improvement is observed in the pT range of
300 − 500 GeV, as the evaluation dataset in this region is dominated by 2-jet events.
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Consequently, removing 3- and 4-jet events has minimal impact here, unlike in the
pT > 600 GeV range, which contains a higher proportion of high jet multiplicity events.
The primary difference from the analysis in Figure 5.13 is the altered curve shape:
rather than concave-down, it now rises at high pT . This indicates that W-AM ef-
fectively identifies more well-defined high-pT jets — an insight obscured in the full
dataset analysis.

While W-AM does not surpass the Single Jet 180 trigger in overall efficiency, it
offers complementary advantages that make it valuable in a combined trigger strat-
egy. Its significantly lower trigger rate permits a reduced pT threshold, allowing it to
capture low-to-moderate pT events that Single Jet 180 cannot within the 1 kHz rate
constraint. This makes W-AM particularly effective in extending coverage to regions
otherwise excluded due to rate limitations. For high pT events, where W-AM’s perfor-
mance is limited by increasing jet multiplicity, a logical OR with Single Jet 180 would
ensure efficient selection across a broader pT range without violating rate constraints.

Alternative evaluation strategies, such as restricting the η or ϕ phase space, were
investigated but introduced additional statistical uncertainty without substantially
altering the efficiency curve. Example plots with constraints of |η| < 2.4 (W-AM’s TP
input boundary) and |ϕ| < 0.349 radians (excluding the 0th and 17th CaloLayer1 TP
regions) are shown in Appendix A. The negligible impact of these constraints suggests
that W-AM detects jets at the edges of the TP grid with comparable accuracy to those
located centrally. This is a favorable outcome, as it indicates no significant location-
based bias influencing the trigger’s efficiency.

To complement the analysis in Chapter V, Section 3, Figures 5.21 and 5.22 show
the efficiencies of all algorithms evaluated on the 2-jet subset using a relaxed match-
ing condition of ∆R < 0.8. As before, algorithm efficiency increases with a looser
matching threshold. Under this condition, W-AM achieves an efficiency above 0.90
for pT > 250 GeV and exhibits a smoother efficiency curve. Notably, W-AM with ∆R
< 0.8 performs comparably to W-MM with the stricter ∆R < 0.4 condition shown in
Figure 5.19.

With the expanded matching criterion, both W-MM and Single Jet 180 reach near-
unity efficiency across the full kinematic range. Although ∆R < 0.8 still enforces
close spatial proximity (approximately within two CaloLayer1 TP regions), stricter
matching thresholds offer more discriminating insight into trigger behavior and inter-
algorithm differences.

Therefore, while W-AM appears to perform well under these relaxed matching con-
ditions, this alone does not provide definitive evidence of its competitiveness relative
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to other triggers. The looser matching threshold tends to elevate efficiency across all
algorithms, reducing the ability to distinguish nuanced performance differences. For
instance, the near-unity efficiency observed for both W-MM and Single Jet 180 in this
setting offers limited insight into their sensitivity to jet pT or spatial resolution.

5. Comparative Analysis of Trigger Rate and Efficiency for WOM-
BAT and JEDI

Originally developed as a predecessor to WOMBAT, the JEDI algorithm served as
a baseline for exploring whether ML-based L1T systems can surpass traditional rule-
based designs when implemented on FPGAs. This section presents a comparative
analysis of the trigger rates and selection efficiencies for both algorithms, evaluated
over the full test dataset and a subset restricted to two-jet events. Since the W-MM
model exceeds the resource constraints of the target FPGA, it is excluded from com-
parative analysis. Consequently, only the W-AM model is evaluated against JEDI for
performance benchmarking.

5.1 W-AM and JEDI Rate Analysis

As summarized in Table 5, W-AM continues to maintain the lowest pT threshold
at a fixed rate of R(pT ) = 1 kHz among the FPGA-implemented algorithms. This is
advantageous, as W-AM exhibits greater pileup resilience and enables the selection
of lower pT jets under a set rate constraint. The new component of this analysis,
the JEDI algorithm, achieves a lower pT threshold than Single Jet 180, but fails to
meet W-AM’s threshold of 140.4 GeV. W-AM’s low rate stems from its fixed low jet
multiplicity, unlike JEDI, which allows up to 6 jets, or Single Jet 180, which has
variable multiplicity. In the kinematic region of pT > 300 GeV, JEDI exhibits a higher
rate than Single Jet 180, similar to the behavior of W-MM observed in Figure 5.9. The
elevated rate arises from JEDI and W-MM’s tendency to over-predict jet multiplicities
or tag higher-energy ZB events with multiple jets.

As shown in Figure 5.23, W-AM maintains a consistently lower rate than JEDI
across all pT values. JEDI relies on fixed selection rules, making it sensitive to cat-
egory definitions and unable to adapt to unmodeled data features. This rigidity can
introduce systematic biases and reduce robustness to variations in jet topology. In
contrast, W-AM’s (as well as W-MM’s) learned representations enable broader gen-
eralization. The sharp rate suppression in W-AM reflects its capacity to reject back-
ground without overfitting to specific patterns. This distinction is particularly rele-
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L1T Algorithm pT at 1 kHz

Single Jet 180 187.4± 5.50 GeV
JEDI 150.2± 5.50 GeV
W-AM 140.4± 5.50 GeV

Table 5: Summary of pT Values Associated with a 1 kHz Trigger Rate for FPGA
Implemented Algorithms

vant in high-pileup environments, where static thresholds are less effective. Further-
more, the adaptive nature of W-AM could support improved long-term stability under
evolving detector conditions.

5.2 W-AM and JEDI Efficiency Analysis

As previously discussed, the theoretical constraint on W-AM’s efficiency prevents
it from achieving ϵ(pT ) ≈ 1 at high jet pT , even as jets become more collimated and
background levels decrease. Given JEDI’s fixed output of 6 jets per event, it is able to
efficiently capture all H → bb̄ decays in TPs with jet multiplicities between 3 and 6,
which are dominant in the high-pT regime. As a result, full-dataset evaluations intro-
duce a bias in favor of JEDI when assessing pure algorithmic performance. However,
this evaluation remains essential, as it reflects realistic LHC conditions where high
jet multiplicity events can occur and are beyond the capture capability of W-AM.

L1T Algorithm pT Threshold ϵ(pT ) at R(pT ) = 1 kHz
Matching Condition ∆R < 0.4

Single Jet 180 187.4± 5.50 GeV 0.91+0.03
−0.04

JEDI 150.2± 5.50 GeV 0.23+0.05
−0.04

W-AM 140.4± 5.50 GeV 0.53+0.06
−0.06

Table 6: Summary of pT Values Associated with a 1 kHz Trigger Rate on Full
Evaluation Dataset for W-AM, JEDI, and Single Jet 180

As shown in Table 6, the W-AM algorithm achieves a trigger rate of R(pT ) = 1

kHz at a lower transverse momentum threshold compared to JEDI. Furthermore,
in the vicinity of this threshold, W-AM demonstrates a 0.3 higher efficiency in the
low-pT regime. These characteristics make W-AM more effective for tagging lower-pT ,
boosted H → bb̄ jets. This performance advantage persists up to pT ≲ 300 GeV, within
which W-AM consistently yields higher efficiency and lower trigger rates than JEDI.
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Figure 5.23: Rate vs Offline pT for W-AM, JEDI, and Single Jet 180 With Threshold
At R(pT ) = 1 kHz

A contributing factor to JEDI’s reduced efficiency is the super-region activity veto
condition, as detailed in Chapter IV, Section 4, and summarized in Table 1. This veto,
combined with stringent pileup mitigation cuts on ET , imposes tight constraints that
exclude lower-energy events. While these criteria limit the algorithm’s sensitivity to
less energetic signatures, they were deliberately designed to suppress high-rate QCD
background processes, which dominate in this kinematic regime.

In contrast, for pT > 300 GeV, JEDI outperforms W-AM. This is evident in Figures
5.24 and 5.25, where both algorithms are evaluated on the full efficiency dataset and
a subset constrained to events with exactly two jets. In the full dataset, JEDI asymp-
totically reaches an efficiency of ϵ(pT ) ≈ 1.0, whereas W-AM underperforms due to
limitations in handling multi-jet topologies.

When the dataset is restricted to events with exactly 2 jets, W-AM exhibits im-
proved efficiency in the high-pT regime. In contrast, JEDI’s performance remains
largely unaffected by this constraint, reflecting the stability of its rule-based, deter-
ministic design. JEDI consistently evaluates the 6 leading jet candidates, regardless
of total jet multiplicity. Its robustness stems from iterating over the full event space
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Figure 5.24: Trigger Efficiency vs. Offline
pT for W-AM, JEDI, and Single Jet 180
Evaluated on Full Dataset (∆R < 0.4)

Figure 5.25: Trigger Efficiency vs. Offline
pT for W-AM, JEDI, and Single Jet 180

Evaluated on Jet Multiplicity of 2 Events
(∆R < 0.4)

using a fixed 3 × 3 grid structure, computing energy sums, and applying predefined
veto conditions on a per-candidate basis. As a result, the algorithm’s response is min-
imally influenced by event-level complexity, handling both single-jet and multi-jet
topologies in a uniform manner.

6. FPGA Timing and Resource Usage Analysis

All timing and utilization figures in this section are obtained after HLS synthe-
sis but before placement-and-route (P&R) for the designated Xilinx Virtex-7 device.
At this stage, Vitis HLS provides cycle-true latency and initiation interval (II) re-
ports, which remain unchanged after P&R, as well as an estimated clock period and
resource count that do not yet include routing delays or clock-tree overhead. For 7-
series devices the HLS estimates are usually pessimistic: post-route clock periods are
typically 10− 30% shorter than the HLS report, and LUT utilization falls by roughly
20−40% once logic-level optimizations are applied during implementation [79]. These
synthesis-only reports are therefore adequate for algorithmic comparison, as they pro-
vide consistent and conservative estimates that preserve relative performance and
resource trends across design variants.

For online of a boosted H → bb̄ algorithm in the CMS L1T, the total processing
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latency must remain below 14 clock cycles (CCs). Given that the designated L1T
FPGA operates on a 160 MHz clock, each CC corresponds to 6.25 ns, resulting in a
total allowable processing time of 14 × 6.25 ns = 87.5 ns. For the trigger system to
be consistent with the 40 MHz bunch crossing rate at the LHC, a new event must be
accepted into the processing pipeline every 25 ns, which corresponds to an II of 4 CCs.
Moreover, the CMS L1T hardware ensures that the full set of input data for a single
event, comprising calorimetric information, is available to the algorithm after 4 CCs
from the bunch crossing. This structure allows the algorithm to operate on complete
event information with a fixed latency budget while maintaining alignment with the
continuous event stream produced by the LHC.

As discussed in Chapter IV, Sections 5 and 6, the W-AM and JEDI algorithms were
synthesized onto FPGA using HLS. Two implementations of W-AM were evaluated:
one utilizing the DATAFLOW directive for parallelism through task-level pipelining,
and another employing PIPELINE and INLINE pragmas to optimize function-level
latency and resource reuse. As shown in Table 7, none of the algorithms meet the
L1T FPGA processing time requirement of < 87.5 ns. Through the DATAFLOW imple-
mentation, W-AM manages to achieve the lowest latency of 22 CCs, which results in
a processing time of 137.5, with respect to the target time per CC of 6.25 ns. In con-
trast, the optimized PIPELINE+INLINE implementation achieves a minimal latency
of 24 CCs, indicating that the DATAFLOW approach provides better task parallelism
and execution speed.

Compared to W-AM, the JEDI algorithm has a latency of 56 CCs, which translates
to a total processing time of 350.0 ns. This is significantly higher than the target
latency of 14 CCs, making this algorithm much less optimal than W-AM for online
L1T FPGA deployment. JEDI’s computational complexity, which stems from dynamic
pileup estimation, energy summing over sliding windows, and bitonic sorting of jet
candidates, significantly increases execution latency. The extensive reliance on LUTs
for pileup correction and veto logic further strains FPGA resources, particularly ev-
ident in higher LUT consumption compared to W-AM implementations. While the
JEDI system has higher trigger efficiency, its high resource demands limit its suit-
ability for real-time applications under strict L1T constraints.

While the upper bound of the timing uncertainty for all algorithms exceeds the 6.25

ns target, the average time per clock cycle remains well below the threshold at 5.79

ns (or 5.76 ns for the PIPELINE+INLINE implementation) and 4.56 ns for W-AM and
JEDI, respectively. This indicates that the designs meet performance expectations
under nominal conditions. Moreover, as noted earlier, post-route synthesis typically
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reduces clock periods by an additional 10-30% compared to the initial HLS estimates,
further improving timing margins [79]. Taken together, these results indicate that,
although the upper bounds of the timing per CC estimates exceed the 6.25 ns tar-
get, the implementations still exhibit sufficiently low average CC times to support
potential online deployment.

Algorithm Latency (CC) II (CC) CC Estimate Total Processing
Time For Target
CC of 6.25 ns

W-AM (PIPE+INLINE) 24 4 5.76± 1.69 ns 150 ns
W-AM (DATAFLOW) 22 4 5.79± 1.69 ns 137.5 ns
JEDI 56 4 4.56± 1.69 ns 350 ns

Table 7: Synthesis-Level Timing Summary

Table 8 presents the FPGA resource utilization for each implementation. The key
hardware resources reported include [80]:

• Block Random Access Memory (BRAM): On-chip memory blocks embedded
within FPGAs that typically provide a storage capacity of 18, 432 bits per block.
These blocks offer configurable data widths and depths, support dual-port ac-
cess, and are optimized for low-latency, high-bandwidth operations. They serve
as local memory for storing intermediate computation results, buffering data
streams, and facilitating efficient data exchange between logic modules. W-AM
and JEDI are highly pipelined algorithms that use directives to enable function
inlining and dataflow, thus avoiding temporary storage in dedicated memory
blocks.

• Digital Signal Processing (DSP) Blocks: Specialized hardware units op-
timized for high-speed arithmetic operations such as multiplication, addition,
and multiply-accumulate (MAC). In CNN implementations, DSP blocks are crit-
ical for executing convolutional kernels and matrix multiplications with high
throughput, making use of pipelined architectures for efficient fixed-point or
floating-point computations that accelerate both filtering and feature extraction
processes.

• Flip-Flops (FF): Fundamental sequential logic elements that capture and store
single-bit information on clock edges. They are critical for implementing regis-
ters, synchronizers, and pipeline stages in digital circuits. Key parameters such
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as setup time, hold time, and propagation delay determine the maximum oper-
ational frequency and reliability of timing in synchronous digital designs.

• Look-Up Table (LUT): Configurable combinatorial logic components that im-
plement arbitrary Boolean functions by mapping a set number of input values
to predetermined outputs. They form the backbone of FPGA logic synthesis,
enabling the implementation of efficient digital circuits. In addition to general-
purpose logic, LUTs can be repurposed as fixed-function look-up tables for stor-
ing constants and precomputed values, such as those used in the JEDI algorithm
for pileup mitigation.

• Ultra Random Access Memory (URAM): High-density memory blocks pro-
vided in some FPGA architectures, designed for scenarios that demand large
volumes of on-chip storage with high throughput. URAM offers a greater stor-
age capacity per block compared to BRAM, making it suitable for applications
requiring extensive data buffering and processing. In both W-AM and JEDI,
URAM remains unused for the same reasons as BRAM: the algorithms rely on
pipelining and dataflow optimizations to minimize the need for on-chip memory
storage.

L1T Algorithm BRAM DSP FF LUT URAM

W-AM (PIPE+INLINE) 0% 10% 4% 19% 0%
W-AM (DATAFLOW) 0% 11% 4% 20% 0%
JEDI 0% 1% 14% 121% 0%

Table 8: Summary FPGA Resource Usage For W-AM and JEDI

The key difference between the JEDI and W-AM algorithms is in the utilization
of DSP blocks and LUTs. W-AM maps quantized convolutions and dense layers to
DSPs, maintaining low LUT usage (≤ 20%, Table 8) and achieving low latency (22−24

cycles) with sub-6 ns clocks (Table 7). JEDI, by contrast, uses minimal DSPs (1%)
but extremely LUT-heavy control logic, leading to an estimated 121% LUT utilization
during Vivado HLS synthesis. This value exceeds the device’s physical capacity due to
conservative overestimation by HLS, which does not account for optimizations applied
during placement and routing. In practice, post-implementation resource usage is
often reduced by 20−40%, making the design fit feasible. The inflated estimate reflects
high logic density, not an unimplementable design, and highlights the trade-off: JEDI
achieves a shorter clock period (4.56 ns) but incurs high latency (56 cycles), leading to
a total processing time ≈ 2.5 times higher than W-AM’s DATAFLOW implementation.
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7. Analysis Discussion: Comparative Assessment of L1T Algo-
rithms

The overall evaluation of the L1T trigger algorithms reveals a series of trade-offs
when comparing physics performance with FPGA implementability. Table 9 summa-
rizes key physics performance metrics, while Table 10 focuses on the synthesis-level
FPGA implementation results. In both tables, checkmarks indicate that the criteria
are met.

L1T Algorithm Lowest pT at
1 kHz

Highest
ϵ(pT ) for
pT < 300
GeV

Highest
ϵ(pT ) for
pT > 300
GeV

Handles
≥ 3 Jets

FPGA Imple-
mented

Single Jet 180 ✗ tie tie ✓ ✓

W-MM ✗ tie tie ✓ ✗

W-AM ✓ ✗ ✗ ✗ ✓

JEDI ✗ ✗ ✗ ✓ ✓

Table 9: Trigger Physics Summary

From a physics standpoint (Table 9), the Single Jet 180 trigger consistently achieves
high efficiency both for low and high pT jets and also accommodates events with ≥ 3

jets. However, its relatively higher pT threshold at R(pT ) = 1 kHz limits the ability to
capture lower energy jets.

It is important to note that ϵ(pT ) is defined as the fraction of correctly identified
signal jets to the total number of true signal jets at each pT bin — that is, it quantifies
the fraction of true positive predictions. However, this metric does not capture false
positives; an algorithm can achieve a high efficiency by accepting a large number of
events, which include both true and false positives. In practice, although Single Jet
180 achieves one of the highest efficiencies, it does so at the expense of a compara-
tively high trigger rate. This implies that while it captures many true signal events,
it also selects an inflated number of events that do not correspond to boosted H → bb̄

jets when compared to the WOMBAT and JEDI algorithms.
The goal of an optimal L1T system is to minimize the trigger rate (thus minimizing

false positive jets tagged with L1A) while maximizing true positive efficiency. This
balance is crucial for ensuring that the downstream processing and data acquisition
systems are not overwhelmed while still retaining the maximum number of target
physics events.

WOMBAT’s student-teacher framework is part of a two-pronged approach. On
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L1T Algorithm II= 4 Lowest
Latency

Clock
Period
≤ 6.25 ns

LUT Usage
< 50%

DSP Usage
< 20%

W-AM (PIPE+INLINE) ✓ ✓ ✓ ✓ ✓

W-AM (DATAFLOW) ✓ ✗ ✓ ✓ ✓

JEDI ✓ ✗ ✓ ✗ ✓

Table 10: Synthesis-level FPGA Implementation Summary

one hand, W-MM employs an EDA architecture to better extract jet substructure and
distinguish true boosted H → bb̄ jets from QCD background. This complexity enables
W-MM to achieve efficiency nearly equivalent to that of the Single Jet 180 algorithm,
yet at a significantly lower pT threshold, approximately 40.6 GeV lower. Consequently,
W-MM can operate at a notably lower rate, reflecting its enhanced discrimination
ability and reduced false positive L1A tagging.

On the other hand, W-AM was developed to meet the real-time constraints of
FPGA implementation. This system represents a deliberate tradeoff between model
complexity and hardware feasibility. To meet strict FPGA resource and latency con-
straints, W-AM employs a simplified architecture with a fixed jet multiplicity. This
limits its ability to match the efficiency of Single Jet 180, especially in high-multiplicity
or high-pT kinematic regions. However, this same simplicity results in a lower overall
rate. Because W-AM is structurally constrained to predict only 2 jets per event, it in-
herently selects fewer jets, leading to the lowest trigger rate of all systems evaluated,
even if it occasionally misses legitimate signal jets.

In contrast to WOMBAT, the JEDI algorithm represents a more traditional, rule-
based approach to jet tagging, relying on deterministic selection logic, super-region
vetoes, and pileup mitigation through fixed energy thresholds. JEDI achieves higher
efficiency than W-AM for pT > 300 GeV and can handle high jet multiplicity events
due to its fixed 6-jet output structure. However, this same structure results in an
elevated trigger rate, as the algorithm tends to tag background jets with L1A. From
an implementation standpoint, JEDI meets FPGA initiation interval requirements
and achieves the shortest estimated clock period among the algorithms tested. Yet, its
high logical complexity, resulting from extensive LUT-based control logic, translates
to excessive resource usage and a latency of 56 cycles, more than twice that of W-AM
and far exceeding the 14-cycle maximum needed for online CMS L1T deployment.
This places JEDI even further than W-AM from being a viable candidate for real-time
tagging.
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Aspect Physics Performance FPGA Implementation

Efficiency High efficiency indicates a
high true positive jet tagging
rate.

Simple, FPGA-compatible trig-
ger systems may inflate efficiency
by over-tagging, while resource-
constrained CNNs can underperform
due to limited substructure resolu-
tion.

pT Thresh-
old (Rate)

A low trigger rate implies
fewer false positives, enabling
a lower jet pT selection thresh-
old.

Simple, FPGA-compatible designs
with fixed multiplicity or strict cuts
reduce rate but limit signal accep-
tance; permissive models raise effi-
ciency but increase false positives.

Model Com-
plexity

Complex architectures im-
prove jet discrimination and
efficiency.

Higher complexity increases re-
source usage and latency, potentially
violating L1T online processing
constraints and making models un-
feasible for FPGA implementation.

Jet-
Multiplicity
Handling

Flexible jet multiplicity per-
mits efficient capture of events
with multiple jets.

Fixed jet multiplicity simplifies de-
sign, making ML models FPGA-
compatible, and reduces rate but can
miss genuine multi-jet events.

Latency Extremely low latency (< 14
cycles) is critical for real-time
triggering.

More complex algorithms typically
incur higher latencies, often exceed-
ing online limits.

Resource
Utilization

Advanced detection schemes
may require extensive logical
resources to achieve high per-
formance

Keeping resource usage (LUTs,
DSPs) low often necessitates al-
gorithm simplifications, limiting
efficiency .

Table 11: Summary of Trade-offs in L1T Trigger Evaluation

Table 11 distills the algorithm-specific trade-offs identified in this study, evaluated
relative to the baseline Single Jet 180 trigger:

• W-MM: Achieves high signal efficiency and reduced trigger rate through an ex-
pressive EDA-based architecture capable of capturing complex jet substructure.
However, the design exceeds available FPGA logic and timing constraints, ren-
dering it infeasible for real-time deployment on the designated FPGA device.
Trade-off: Performance vs. Hardware Feasibility

• W-AM: Yields the lowest trigger rate due to a fixed low-multiplicity output and
a compact CNN architecture compatible with FPGA resources. This simplifica-
tion, however, results in reduced efficiency, particularly for high-pT and multi-jet
events.
Trade-off: FPGA Compatibility vs. Physics Reach
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• JEDI: Offers moderate efficiency and rate via a rule-based design that is tun-
able and deterministic. While synthetically implementable on FPGA, its logic-
heavy structure incurs high latency and lacks the capacity to adapt to unmod-
eled features in the input or changing detector conditions.
Trade-off: Tunability and Performance vs. Latency and Adaptability
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Chapter VI: Conclusion, Future Prospects, and Ac-
knowledgments

This thesis presents a systematic evaluation of ML-based L1T algorithms for the
CMS detector, with a specific focus on boosted H → bb̄ jet tagging under Run 3 con-
ditions. Two neural network-based models were developed for this study: W-AM,
a quantized convolutional neural network designed to meet current FPGA resource
and timing constraints, and W-MM, a more expressive EDA architecture aimed at
improved jet substructure resolution. Both were benchmarked against a traditional
rule-based JEDI algorithm and the standard Single Jet 180 trigger. W-AM and JEDI
were implemented in Vitis HLS for the Virtex-7 XC7VX690T-2FFG1927I FPGA to
assess real-time hardware feasibility.

The designated FPGA device, used in the present (Run 3) CMS L1T, imposes strict
latency and resource constraints that limit the complexity of ML models suitable
for real-time jet tagging. Within these limitations, WOMBAT demonstrates superior
FPGA performance relative to traditional rule-based systems, such as JEDI, under-
scoring the potential of ML models to achieve higher accuracy with reduced compu-
tational overhead. While the lightweight W-AM model does not surpass the Single
Jet 180 trigger in efficiency, it operates at a significantly lower trigger rate and ap-
proaches the required L1T processing timing. In contrast, W-MM achieves a lower
rate with comparable efficiency across the full pT range, outperforming Single Jet
180 in terms of physics performance, although it exceeds current hardware resource
limits.

With the CMS Phase-2 upgrade on the horizon, these hardware limitations are ex-
pected to be significantly relaxed. The adoption of next-generation FPGA platforms,
featuring expanded logic, memory, and DSP capabilities, will accommodate more so-
phisticated models at reduced timing costs. Under such conditions, architectures like
W-MM are likely to become viable for online deployment. As a prototype system devel-
oped within the constraints of Phase-1, WOMBAT offers a forward-compatible foun-
dation: its strong physics performance and FPGA compatibility position it as a com-
pelling candidate for future L1T systems operating in the high pileup environment of
the HL-LHC.

In particular, maintaining low trigger rates under high pileup conditions will re-
quire enhanced substructure discrimination, as the increased number of simultane-
ous collisions will exacerbate background contamination. The W-MM model demon-
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strates precisely this capability, offering both low rate and high efficiency, indicative
of effective background rejection through learned substructure features. In contrast,
Single Jet 180 incurs a high rate due to its broad selection logic, while JEDI, by de-
sign, maintains low efficiency in the densely populated low-pT region to suppress the
rate. Its rule-based architecture lacks the adaptability to learn substructure features,
limiting performance in complex jet environments.

Although WOMBAT was not tested in a live CMS trigger environment as the de-
velopment timeline did not align with the operational schedule of the experiment, the
simulation-based evaluation presented in this thesis strongly supports its future vi-
ability. The demonstrated ability of WOMBAT to exploit low-level calorimeter inputs
for real-time jet substructure tagging lays the groundwork for ML-based L1T systems
during Phase 2. Furthermore, with the forthcoming HGCAL upgrade providing in-
creased spatial granularity, ML-based triggers like WOMBAT will have even greater
access to fine-grained features, enabling improved substructure resolution and en-
hanced discrimination power within the stringent latency requirements of the L1T.

Future research will focus on refining the WOMBAT architecture, enhancing W-
AM’s physics performance within FPGA constraints, and investigating the feasibil-
ity of deploying W-MM through alternative hardware pipelines beyond the HLS4ML
framework. Although the current WOMBAT architecture was developed in the con-
text of the Run 3 detector and trigger system, it is envisioned as a prototype for
deployment during Phase 2 of the CMS experiment. The upcoming LS3 period offers
a critical window to adapt and extend WOMBAT, along with similar ML-based jet
tagging algorithms, to align with the upgraded Phase 2 architecture.

Regardless of WOMBAT’s future trajectory toward online implementation, the
present study establishes a crucial foundation for ML-based jet tagging within the
CMS L1T framework. At this stage, the methods, architectures, and evaluation
strategies developed provide essential groundwork, establishing a technical founda-
tion for the development and integration of sophisticated trigger algorithms antici-
pated in Phase 2 of the CMS experiment.
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Appendix A: Supplemental Figures

1. Common Production Mechanisms of Higgs Bosons
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Figure A.1: Common Production Mechanisms of H → bb̄

Figure A.1a illustrates the ggH production mode. Figure A.1b refers to the Vector Boson
Fusion production mode, whereas Figure A.1d depicts the Higgs production in association

with a Vector boson. Figure A.1c shows Higgs production in association with a top
quark-antiquark pair.

2. Additional Event Displays

Figure A.2: W-MM TP Display - Event
829

Figure A.3: W-AM TP Display - Event
829
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Figure A.4: W-MM TP Display - Event
2549

Figure A.5: W-AM TP Display - Event
2549

3. Efficiency Analysis Implementing Space Constraints

Figure A.6: W-AM and Single Jet 180
ϵ(pT ) for |η| < 2.4

Figure A.7: W-AM and Single Jet 180
ϵ(pT ) for |ϕ| < 0.349 Radians
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Appendix B: Z Boson Mass Derivation: Higgs Mecha-
nism Continuation

The coupling of neutral gauge fields to the Higgs doublet can be described as [43]:

L =
1

4
{(g′BµYΦ + gW 3

µτ3)Φ}†(g′BµYΦ + gW 3µτ3)Φ. (76)

Evaluating this at the vacuum expectation value of Φ, Φmin, gives:

L =
v2

8

[
W 3†

µ B†
µ

] [ g2(τ ⟨Φ⟩
3 )2 gg′YΦτ

⟨Φ⟩
3

gg′YΦτ
⟨Φ⟩
3 g′2Y 2

Φ

][
W 3µ

Bµ

]
(77)

Where the mass-squared matrix can be identified as:

M2 =
v2

4

[
g2(τ

⟨Φ⟩
3 )2 gg′YΦτ

⟨Φ⟩
3

gg′YΦτ
⟨Φ⟩
3 g′2Y 2

Φ

]
(78)

Defining a unitary transformation of the sort:

U =
1√

g2(τ
⟨Φ⟩
3 )2 + g′2Y 2

Φ

[
g′YΦ −gτ

⟨Φ⟩
3

gτ
⟨Φ⟩
3 g′YΦ

]
, (79)

and setting the lower component of the Higgs field to be electrically neutral, i.e.
1
2
τ
⟨Φ⟩
3 = −1

2
and YΦ = 1, the diagonalized matrix becomes [43]:

M2
Diag = UM2U−1 =

[
0 0

0 v2

4
(g2 + g′2)

]
. (80)

The zero-mass eigenvalue of this matrix corresponds to the four-potential that
results from Eq.79. The gauge interaction is given by:

eQ =
1√

g2(τ
⟨Φ⟩
3 )2 + g′2Y 2

Φ

(
YΦ

τ3
2
− τ

⟨Φ⟩
3

2
Y
)
. (81)

In this interaction, by definition, the coupling to the Higgs field is 0. Q is commonly
known as the electric charge operator. Aµ is defined as the massless four-potential,
known as the photon, which is a consequence of the choice for Higgs VEV (which was
taken to be minimal). From Eq.80, the non-zero eigenvalue is the squared mass of
the Z boson, MZ :

M2
Z =

v2

4
(g2 + g′2) ≡

M2
W±

cos2 θW
(82)
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Appendix C: Detector Geometry

This section will briefly cover some basic definitions, as well as a schematic repre-
sentation of the Phase 2 ECAL barrel region, which is closely related to the formatting
of the TP output used as a sample in the study. From the center of the LHC ring, the
CMS detector is located North. The coordinate system used is defined as follows:

• x-axis: horizontal, pointing towards the center of the LHC;

• y-axis: vertical, pointing upwards;

• z-axis: horizontal, pointing in the beam direction;

• ϕ: defined as 0◦ in the x-axis and 90◦ in the y-axis;

• η: 0◦ in the x-y plane, positive in +z and negative in −z.

An illustrative graphic of the aforementioned definitions can be seen in Fig.C.1
alongside vectors indicating the direction of the transverse momentum.

Figure C.1: Geometric View of the CMS Detector With Coordinate Axis [81]
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Appendix D: Schematic View of WOMBAT Models

Figure D.1: Schematic Architecture of WOMBAT Apprentice Model
Schematic view of the WOMBAT Apprentice Model and WOMBAT Apprentice Skeleton

Model. Differences are highlighted in red.
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Figure D.2: Schematic Architecture of WOMBAT Master Model
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Appendix E: Control Plots

1. pT Resolution

The pT resolution is computed through:

presolution
T =

ptrig
T − preco

T

preco
T

, (83)

where ptrig
T is the jet pT reported by the trigger system, and preco

T is the fully recon-
structed offline jet, which serves as the ground truth.

To ensure a fair shape-based comparison between trigger algorithms with differing
numbers of accepted events, the resolution histograms are normalized:

Histogram(x) → 1

N
· Histogram(x), (84)

where N is the total number of entries in the histogram. This normalization allows
direct visual comparison of the resolution distributions without being biased by abso-
lute event counts.

Evaluating the pT resolution is essential in trigger performance studies because
it directly impacts the sharpness and stability of the trigger response. Poor pT res-
olution leads to broader turn-on curves, which represent the efficiency as a function
of offline pT . This is equivalent to the efficiency plots in Chapter V. A wide turn-on
indicates that the trigger’s response is smeared, making it difficult to define a precise
threshold. This smearing causes efficiency losses near the threshold and increases the
inclusion of lower-energy background jets, degrading the system’s background rejec-
tion. Furthermore, poor resolution results in rate instability, as small fluctuations in
input can cause significant changes in trigger rates. High-resolution performance en-
sures that the trigger accurately reflects the true kinematics of jets, enabling tighter
thresholds and more reliable rate control under high-luminosity conditions.

Benchmarking the resolution of new algorithms against the existing Single Jet 180
trigger is critical to ensure that improvements in rate or acceptance are not achieved
at the cost of degraded pT fidelity. Good resolution indicates a tight correlation with
offline jets, enabling sharp efficiency turn-ons and reliable threshold tuning.

Additionally, the resolution distribution provides a diagnostic tool for identifying
potential biases in the scale of the new algorithm. By comparing it directly with the
baseline, one can determine if scale factors are needed to calibrate the trigger output,
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Figure E.1: W-AM pT Resolution Benchmarked Against Single Jet 180

ensuring consistency across algorithms and physics analyses.

Figure E.2: W-MM pT Resolution Benchmarked Against Single Jet 180

Both W-AM and W-MM exhibit pT resolution distributions broadly consistent with
Single Jet 180, with similar spread and peaks in the range [−0.6,−0.4]. JEDI, driven
by rule-based logic and hard veto conditions, produces a narrower distribution cen-
tered around −0.2. Notably, W-MM also shows a secondary peak near −0.2, suggesting
it effectively captures jets targeted by JEDI’s selection logic.
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Figure E.3: JEDI pT Resolution Benchmarked Against Single Jet 180

Although an ideal trigger would peak at zero resolution, the W-series algorithms
were tuned to reproduce the behavior of Single Jet 180. This ensures compatibility
with current CMS trigger thresholds and maintains continuity in downstream selec-
tion performance.

2. Zero Bias Jet pT Distribution

The ZB count vs. pT control plots provide a direct, unweighted view of the raw
event distributions as observed in ZB data. Unlike the normalized rate computation
presented in Chapter V, these plots are not scaled to reflect a physical rate but instead
represent the absolute number of jets identified by each algorithm per pT bin. This
distinction is important: while Chapter V focuses on the trigger rate prediction under
pileup and luminosity scaling, the current plots offer a baseline diagnostic of trigger
behavior, free from external scaling factors.

The JEDI algorithm demonstrates a sharp turn-on near the bin pT ≈ 11− 22 GeV,
which reflects its use of a rule-based pileup mitigation threshold that effectively sup-
presses low-pT jets. This thresholding behavior is clearly visible as a near-absence of
counts in the lowest bins. In contrast, W-AM and W-MM display broader low-pT activ-
ity, indicating less robust suppression. This is expected, as the thresholding behavior
in the WOMBAT models is not hard-coded but rather learned during training, result-
ing in greater flexibility but also reduced sharpness at the low end. All algorithms
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are benchmarked against Single Jet 180, which serves as the reference in both rate
and resolution performance.

Figure E.4: Raw ZB pT Distribution for WAM, WMM, JEDI, and Single Jet 180
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Appendix F: Documentation and Repositories

Repository Link

TP Displays github.com/mbileska/WOMBAT_TP_Displays
Main WOMBAT Repository github.com/mbileska/WOMBAT_Preview

Table 12: GitHub Repositories Related to the WOMBAT Project
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