The CERN Large Hadron Collider: Accelerator and Experiments

The TOTEM Experiment at the CERN Large Hadron Collider

The TOTEM Collaboration

Abstract: The TOTEM Experiment will measure the total pp cross-section with the luminosity-independent method and study elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, will be installed on each side in the pseudorapidity region $3.1 \leq |\eta| \leq 6.5$, and Roman Pot stations will be placed at distances of $\pm 147\,\text{m}$ and $\pm 220\,\text{m}$ from IP5. Being an independent experiment but technically integrated into CMS, TOTEM will first operate in standalone mode to pursue its own physics programme and at a later stage together with CMS for a common physics programme. This article gives a description of the TOTEM apparatus and its performance.

Keywords: Gaseous detectors; Solid state detectors; Particle tracking detectors; Analogue electronic circuits; Data acquisition circuits; Data acquisition concepts; Detector control systems; Digital electronic circuits; Electronic detector readout concepts; Electronic detector readout concepts; Front-end electronics for detector readout; Modular electronics; Optical detector readout concepts; Trigger concepts and systems; VLSI circuits; Detector cooling and thermo-stabilization; Detector design and construction; Overall mechanics design.
Contents

The TOTEM Collaboration ii

1 Introduction 1

2 Physics objectives 3
 2.1 Total pp cross-section 4
 2.2 Elastic pp scattering 5
 2.3 Diffraction 7

3 Beam optics and running conditions 9
 3.1 Properties of the high-β∗ Optics 9
 3.2 Beam diagnostics 11
 3.3 Running scenarios 11

4 The Roman Pot system 13
 4.1 System strategy and overview 13
 4.2 Mechanical design of the Roman Pot 16
 4.2.1 The vacuum chamber 16
 4.2.2 The pot and its thin window 16
 4.2.3 The movements 18
 4.3 “Edgeless” silicon detectors with current terminating structure 18
 4.3.1 The concept of current terminating structures 19
 4.3.2 The silicon detector for the TOTEM Roman Pots 21
 4.3.3 Electrical characterisation 21
 4.4 On-detector electronics 23
 4.5 Detector integration and cooling in the Roman Pot 25
 4.5.1 Integration of detector stacks in the pot 25
 4.5.2 The cooling system 26
 4.5.3 Tests on the thermo-mechanical prototype 27
 4.6 Detector performance 28
 4.6.1 Detector tests with analog readout 28
 4.6.2 Operation of CTS detectors with VFAT chip 31
 4.6.3 Irradiation studies for CTS detectors 32
 4.7 Alternative detector technologies: planar-3D and full 3D silicon 34

5 The forward telescopes 36
 5.1 System strategy 36
 5.2 T1 telescope 37
 5.2.1 Requirements and choice of detector technology 37
 5.2.2 Detector and telescope design 38
 5.2.3 T1 electronics system 45