
2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Chapter 9

Control system

9.1 Introduction

The LHC control system will be an extension of the infrastructure already in use today for the LHC
Injector Chain and the Technical Services. Nevertheless, the LHC will present unique challenges
for the control system. The hardware is of unprecedented complexity and requires a precise and
unambiguous description. Failures could lead to long cryogenic recovery times and long mag-
netic conditioning cycles. Operational efficiency will depend on both the technical services and the
accelerator hardware control systems. The high stored energies and beam powers will require rig-
orous operational procedures, sophisticated diagnostics and real-time automation. The challenging
design parameters and the large dynamic effects will only be mastered by a flexible control strategy,
adapted to changing circumstances as the knowledge of the LHC improves.

9.2 Architecture

The LHC control system architecture is largely based on standard components employed world-
wide for the control of accelerators and used during recent years for the CERN injectors (PS, SPS)
and the LEP machine. However, there are two major changes in the LHC era:

• The consistent use of object-oriented technologies and design principles for the control of
beam-related systems and,

• The wide use of industrial controls solutions for the supervision of complete subsystems of
the LHC.

9.2.1 Overall architecture

As shown in figure 9.1, the LHC control system has three hierarchical layers of equipment commu-
nicating through the CERN Technical Network, a flat Gigabit Ethernet network using the TCP-IP
protocol (section 9.2.2). Starting from the bottom of figure 9.1:

• At the equipment level, the various actuators, sensors and measurement devices are inter-
faced to the control system through three different types of front-end computers:

– 98 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Figure 9.1: Control system architecture.

– VME computers dealing with high performance acquisitions and real-time processing;
these employ a large variety of I/O modules. Typically, the LHC beam instrumentation
and the LHC beam interlock systems use VME front-ends.

– PC based gateways interfacing systems where a large quantity of identical equipment is
controlled through fieldbuses, such as the LHC power converters and the LHC Quench
Protection System.

– Programmable Logic Controllers (PLCs) driving various sorts of industrial actuators
and sensors for systems such as the LHC Cryogenics systems or the LHC vacuum
system.

• At the heart of the control system, powerful UNIX servers host the operational files and run
the LHC applications:

– Application servers hosting the software required to operate the LHC beams and run-
ning the Supervisory Control and Data Acquisition (SCADA) systems.

– Data servers containing the LHC layout and the controls configuration, as well as all
the machine settings needed to operate the machine or to diagnose machine behaviour.

– Central timing, which provides the cycling information for the whole complex of ma-
chines involved in the production of the LHC beam, and the timestamp reference.

– 99 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Processes running in these servers will communicate with the equipment access machines
using various mechanisms and protocols such as the Common Object Request Broker Architecture
(CORBA) and TCP-Modbus.

• At the control room level, consoles running the Graphical User Interfaces (GUI) will allow
machine operators to control and optimise the LHC beams and to supervise the state of key
industrial systems. Dedicated fixed displays will also provide real-time summaries of key
machine parameters.

9.2.2 Network

The control system for LHC relies on the CERN Technical Network. This network uses IP ad-
dresses of the form 172.18.xxx.xxx. The address prefix prevents any direct communication between
the technical network and the Internet. The infrastructure is interconnected with the General Pur-
pose Network so that communications from within the Organization are still possible; however, the
technical network can be completely isolated if required.

The technical network is a highly sub-netted, routed network that implements a high perfor-
mance redundant backbone, reduces parasitic traffic, and keeps the overall structure maintainable.
As shown in figure 9.2, the basic distribution is based on a redundant Gigabit Ethernet backbone
using fibre optical distribution. The core consists of two redundant backbone routers located in
the CERN computer centre and in the Prévessin control room, where most of the fibres terminate.
These two central routers are interconnected in a redundant way to a series of regional routers
located in the following buildings:

• The computer centre (building 513) for central services like Oracle databases and main file
servers.

• The Meyrin control room (building 354) for the control of accelerators located on Meyrin
site.

• The technical control room (building 212) for the supervision of the 2 CERN sites.

• The Prévessin control room (building 874) for the SPS control and other technical services
located on the Prévessin site.

• Each LHC pit (SR building) for the LHC machine and technical services control.

In each technical building there are one or more “star points” configured to respect the max-
imum cable length of 100 m for 100-BaseT connections between the end-node and a high perfor-
mance Fast-Ethernet switch. This switch usually has a 100 Mbps uplink to the closest regional
router that may be upgraded to Gigabit if needed. Close to regional routers, 1 Gbit/s Ethernet may
easily be made available if needed.

Active equipment in the network architecture is installed with a double power supply con-
nected to two independent power sources (normal and secured), in order to ensure proper connec-
tivity even in case of a power-cut on either 220 V distribution.

– 100 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Figure 9.2: The CERN Technical network.

Because the technical network can be completely isolated from the external world, inde-
pendent dedicated redundant name and time servers have been implemented. These servers are
installed at different locations and connected to different regional routers to ensure full redundancy
of the system. It must be noted that because the technical network infrastructure is interconnected
with the general purpose network, security break-ins can be attempted on the devices connected to
this infrastructure. End nodes security survey and updates must be made regularly.

9.3 Equipment access

9.3.1 The VME and PC Front End Computers

Most of the non-industrial accelerator hardware in the PS, SPS, and LHC sites is already connected
to the control system via VME or PC based Front End Computers (FEC). These systems run a real-
time operating system called LynxOS from LynuxWorks [46], or Red Hat Linux [47]. There will
be several hundred FECs distributed in the surface buildings of the LHC and in some cases in the
underground areas. Wherever possible, they will be diskless to increase reliability and will boot
over the network.

A set of commercial or CERN-made hardware interface boards is being standardised for the
LHC, together with the necessary device drivers (e.g. timing generators, timing receivers, beam
interlock controllers, digital acquisition boards, WFIP cards, digitisers, etc.). The type of hardware
(VME or PC), as well as the Operating System (Linux or LynxOS), will be selected according to
the performance needed and the availability of the specific drivers.

These FECs will execute the equipment access software which is part of the resource tier
(figure 9.1). This software accesses data from the hardware interface boards and provides it, either
via subscription or command/response, to any software agent in the control system.

– 101 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

A dedicated FEC software framework (section 9.7.1) has been developed in order to simplify
and standardise the software running in the FECs.

9.3.2 The PLCs

PLCs are increasingly used for controlling industrial equipment for LHC. This type of controller
can be chosen when the process is not synchronised to accelerator timing and when the sampling
period required is not smaller than 100 msec. PLCs offer ease of programming process logic via
standard high-level languages (IEC-61131-3), cost efficiency, high reliability and adaptation to
industrial environment. They are used in typical industrial controls fields such as electricity, water,
gas, cooling, ventilation, but also in accelerator-specific fields of machine cryogenics, interlocks,
vacuum, radio-frequency and beam extraction. PLCs are generally part of a complete subsystem
including supervision (section 9.7.6). In a few cases, they are accessed through VME FECs. As
with any other FEC in the Controls Infrastructure, PLCs benefit from generic facilities such as
remote reset, monitoring and optional clock synchronisation.

9.3.3 The supported fieldbuses

The two fieldbuses used in the LHC accelerator, namely WorldFIP and Profibus, are among the
three fieldbuses recommended at CERN. They are both supported by an internal CERN service.
These fieldbuses typically allow longer distance and more robust protocols than Ethernet. In addi-
tion, they are the only means of connecting equipment located in the LHC tunnel or other radioac-
tive areas.

9.3.4 The WorldFIP fieldbus

Table 9.1 summaries the LHC WorldFIP installation needs. WorldFIP is selected when the follow-
ing features are required:

• Determinism (up to10 µs); is required for:

– The real-time control and synchronisation of LHC equipment.

– High precision time distribution.

– The management of periodic data.

• Robustness in severe environments and in particular:

– Its resistance to electromagnetic noise (level 3).

– Its good resistance to high radiation levels (based on robust semiconductors and a mag-
netic coupling ensuring galvanic isolation).

• Data Rates:

– WorldFIP will be used to control largely distributed LHC systems at high data rates
(1 MBits/s and 2.5 MBits/s).

– High load factor possible (70 to 80% of the network bandwidth).

– 102 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Table 9.1: WorldFIP Needs for the LHC machine.
LHC System Required Time precision (ms) Cable length (km) Data rates
Magnet Protection 1 61 1 MBit/s
Power Converters 0.01 45 2.5 MBit/s
Beam Instrumentation 500 50 31.25 KBit/s
Radio Frequency 1 5 1 MBit/s
Cryogenics 500 90 1 MBit/s
Survey 1000 44 31.25 KBit/s

9.3.5 The Profibus fieldbus

Profibus has been selected for several applications in the LHC, such as fast kicker magnets, cooling
and ventilation, vacuum, cryogenics, magnet and power interlock controllers. The main reasons to
select Profibus for these applications are:

• The robustness of the protocol and simplicity of configuration.

• The large variety of remote I/O systems available with Profibus.

• The ease of integration with Siemens PLCs.

• The availability of radiation-tolerant remote I/O on Profibus.

• Its capacity to be used as an instrumentation bus (Profibus-PA) with a wide range of instru-
mentation products offering Profibus as standard means of connection.

9.4 Servers and operator consoles

The upper layers of the LHC control system (figure 9.1) will be deployed on operation consoles
and fixed displays, files and applications servers to meet the requirements of the LHC applica-
tions software. The servers will be used to run the LHC middle-tier software, to host operational
programs and data files, and also to offer specific services (web services for operation, fixed dis-
plays, SCADA servers, Database servers, etc.). The servers will run the Linux operating system.
Emphasis will be put on the hardware reliability and availability issues by selecting multi-CPU ar-
chitectures with redundant and hot swappable power supplies, discs and fans. Mirroring and RAID
techniques will be used to ensure data integrity and error recovery.

9.5 Machine timing and UTC

9.5.1 Central beam and cycle management

The LHC beam production involves a long chain of injectors which need to be tightly synchronised.
Moreover, the different types of beam to be produced for LHC are only a subset of the beams that
the injectors have to produce for the rest of the experimental programme. All these beams are

– 103 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

produced in sequences of typically a few tens of seconds. The composition of these sequences
changes many times a day, and the transition between different sequences has to be seamless.
To manage the settings of the machines and to synchronise precisely the beam transfer from one
injector to the other up to the LHC, a Central Beam and Cycle Manager (CBCM) is required. The
CBCM will:

• Deliver General Machine Timing (GMT).

• Provide Beam Synchronous Timings (BST).

• Elaborate the “telegrams” specific to each machine and broadcast over the GMT networks.

A “telegram” describes the type of beam that has to be produced and provides detailed infor-
mation for sequencing real-time tasks running in the FECs and for setting up equipment.

The CBCM drives seven separate GMT networks dedicated to the different CERN accelera-
tors, including the LHC, and four BST networks, of which three are for the LHC and one for the
SPS. To achieve extreme reliability, a CBCM runs in parallel on two different machines, with a
selector module capable of seamlessly switching between them.

9.5.2 Timing generation, transmission and reception

Several hardware timing modules are required either to produce reference clocks and timing events,
or to extract the timing pulses or the interrupts needed to drive the equipment from the distributed
timing data. The following is a list of these modules.

• The CTSYNC module provides the “master” clocks from a 10 MHz oscillator which has a
stability which is better than 10−10.

• The CTGU module encodes events to be transmitted over the GMT network: the millisecond
events, machine timing events, telegrams, and the Universal Coordinated Time (UTC) events.

• The CTGB is the driver module for the BST network; it uses the TTC technology [48]. The
CTGB will also send the 1 pulse per second (1PPS) UTC time and some telegram events
over these networks, hence its inclusion in the CBCM.

• The CTRP is a GMT multi-channel reception module. It comes in three formats: PMC, PCI,
and VME and can generate timing pulses with very low jitter. The CTRP recognises the
various types of timing events: UTC time, the telegrams, the millisecond and other machine
events and can use them to trigger pre-programmed actions.

9.5.3 UTC for LHC time stamping

A key requirement for the LHC control system is the need for a timing reference to timestamp the
accelerator data. UTC has been adopted as the standard of date and time for all CERN accelera-
tors [49, 50]. UTC is the basis for the worldwide system of civil time. The motivation behind this
decision was to eliminate the problems associated with the changes between the winter and sum-
mer standards, particularly for the change in October (CET changes from UTC+2H to UTC+1H)
when the time is repeated for one hour.

– 104 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Table 9.2: Required LHC time stamping accuracy.

System Timestamp Accuracy
Beam Dump

< 0.05 ms
Beam Instrumentation
Radio Frequency
Injection (Kickers. . . )
General Machine Timing
Machine Interlocks

1 ms or betterQuench Protection
Power Converter
Feedbacks (orbit, tune . . . )

1 – 10 ms
Cryogenics
Vacuum
All other systems

9.5.4 UTC generation, transmission and reception

The source of date and time for all CERN accelerators will be a Global Positioning System (GPS)
time receiver connected to the CTGU. The GPS provides UTC referenced date and time plus a very
accurate 1 PPS tick, which is used by the CTGUs to synchronise the UTC time.

At initialisation the CTGUs receive the date and time information from the GPS receiver then
run independently, using the clock delivered by the CTSYNCH until a manual resynchronisation is
carried out. CTGUs provide the time every second in UNIX standard format. UNIX time can then
easily be converted by software into year, month, day, hour, minute and second.

UTC time can be provided by the CTRP modules to timestamp the data to be logged with
a 25 ns resolution. Using an optional CERN-developed chip the resolution can be brought down
to 1 ns. The required time-stamping granularity for the different LHC systems [51] is shown in
table 9.2. The 1 ns performance is required principally in the injector chain.

9.5.5 NTP time protocol

PLCs will use the Network Time Protocol (NTP) [52] to synchronise the time (section 9.2.2).
NTP provides accuracies typically within a few milliseconds on LANs and up to a few tens of
milliseconds on WANs. This accuracy is sufficient to properly tag most of the PLC data. Some
PLCs that require higher precision for time-stamping their data will use the high precision 1 PPS
tick from the CTRP; in this case, NTP will be used only to relate this tick to UTC time.

9.6 Data management

The LHC Machine will be of unparalleled complexity in terms of number of components and in
the manipulation of operational parameters. A large number of signals will be made available
to the control room, including over 100’000 from the cryogenics, machine protection, and beam

– 105 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Figure 9.3: LHC Reference Database.

monitoring systems. Over 1’600 electrical circuits will power a wide variety of magnet systems.
The quantity of data to be recorded for diagnostics after a “beam abort” has been estimated as a few
gigabytes; during Hardware Commissioning, it is anticipated that 1 terabyte of information will be
accumulated. Operation of the machine will rely on stringent control of the hardware settings. A
complete beam operational history will be created in order to build a long term understanding of
the accelerator performance. Such a variety and volume of data cannot be exploited without data
management tools. Building on the experience of LEP construction and operation [53], Oracle has
been selected as the strategic choice for data management at the LHC.

9.6.1 Offline and online data repositories

As shown in figure 9.3, the LHC Reference Database is being populated during the machine con-
struction in order to manage the information essential for integration studies, installation, and hard-
ware commissioning. This offline Database will be one of the sources of data that is required to
configure the online LHC control room application software, providing essential information such
as the layout, accelerator optics, and calibration information. The electrical circuit data, described
in the next section, are an example of the use of the database both during construction and operation.

While the Reference Database will be an offline source of information during machine opera-
tion, several online databases — alarm archives, periodic data logging, Post Mortem event archive,
and accelerators settings management — will be required to capture the operational history. These
are described in the later sections of this chapter.

– 106 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

9.6.2 Electrical circuits

The powering layout of the LHC is extremely complex, comprising 1’232 main dipole magnets,
about 450 quadrupole magnets, and several thousand corrector magnets, powered in 1’612 elec-
trical circuits. The currents feeding the magnets range from 60 A (for small correctors) to 12 kA
for main dipole and quadrupole magnets, while the energy stored in the superconducting magnets
is about 10 GJ. About 80’000 high current connections have to be made and tested in the tunnel
during the installation and commissioning phases.

To ensure the correct connection of the superconducting bus bars around the 27 km long
machine, a detailed description of the electrical circuits and their elements has been added to the
layout description of the machine in the LHC Reference Database [54]. This description has been
linked to the existing data describing the physical and magnetic layouts. Changes of this powering
information are very rare, and updates have to be performed only if there are major changes in the
physical or powering layout of the machine. Information about the powering will be provided to
users to:

• Perform the interconnections between cryo-assemblies in the long arc cryostats.

• Configure the powering interlock PLCs.

• Create MAD input files to calculate the beam optics.

• Display detailed circuit and equipment information via the web and the LHC equipment
catalogue.

• Configure hardware state and beam parameter control room application software.

Integrity will be ensured by using the same information to generate the machine optics, make the
circuit connections during assembly, configure the behaviour of the interlock system, and operate
hardware and beams.

9.6.3 Control system configuration

The control system is composed of a large number of application programs, a middleware layer,
VME- and PC-based FECs with control software, industrial PLCs, fieldbuses, and hardware inter-
face modules. These components have shared characteristics, associated with their type or class,
and specific addresses and parameters associated with their instances. All these data will be stored
and described in an Oracle relational database, the Controls Configuration Database. This cen-
trally managed configuration information allows the use of generic software on all levels. A layer
of Java and C++ interfaces will enable all control room software to be data-driven, by fetching at
runtime the layout, interconnection, access methods, and parameters of remotely controlled LHC
equipment. All FECs can be automatically configured and bootstrapped with files generated from
the database. Thanks to a generic design, the database also holds the controls configuration of the
injection accelerator chain of the PS and SPS complexes. This common source of data will make
it possible to have uniform controls data management throughout the accelerator chain, as well as
effective sharing of tools and methods that use this data [56]. On top of the Configuration Database,

– 107 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

a Web browser service will allow exploration of all the information about the underlying controls
hardware and software.

9.7 Communication and software frameworks

9.7.1 FEC software framework

The software running in the LHC FECs will be developed using a specific framework, known as
FESA. This framework is a complete environment for the equipment specialists to design, develop,
test, and deploy real-time control software for the FECs. This framework is also the new standard
for the LHC injector chain. The recurrent components of the equipment control software have been
formalised into a generic model. It defines the structure of the real-time part of the software, which
handles hardware and interrupts, together with the structure of the server task that handles external
requests. In order to enhance the productivity and the maintainability of the code, a clear separation
between the generic and the equipment specific parts is enforced, and automatic code generation
is extensively used. As a result, the ratio between the generic/generated code and the developer-
specific code is usually around 10 to 1. An object-oriented design and a C++ implementation have
been used for supporting this approach.

For building the control software, the programmer is provided with a set of configuration
tools for the creation and evolution of any FESA component. These tools are directly linked to
the control system configuration DB (section 9.6.3). They are used for the definition of internal
data structures, syntax of external commands, and binding between hardware events or external
requests and treatment code. External requests are handled by dedicated server tasks that fully
implement the device access model of the Controls Middleware, which is described in the next
section. Compound data types are supported for data coherency and for performance purposes.

System-level services are provided for the operation of the FECs: handling of errors from
the equipment software, monitoring of processes, etc. These dedicated services preserve the real-
time behaviour of the FECs, and they support remote control for adjusting parameters, such as the
trace level of a task, or for executing corrective action like restarting a process. The developers
and the users (equipment-specialists, operators, and maintenance team) are also provided with a
set of interactive tools, test programs and Java libraries which allow immediate testing of all the
functionality of the software during its development and operation. These facilities are all generated
in an automatic manner, without any specific code being required. The FESA framework is built
for LynxOS and Linux platforms. The software tools are written in Java and are thus platform
independent. No commercial software requiring a run-time license has been used.

9.7.2 Controls Middleware

The Controls Middleware (CMW) is the ensemble of protocols, Application Programming Inter-
faces (API), and software frameworks, which allow seamless communication between the software
entities of the control system. Two conceptual models are supported: the device access model and
the messaging model. The device access model is mainly used in the communication between the

– 108 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Figure 9.4: The Device Access Model.

resource and middle tiers, while the messaging model is mainly used within the business tier, or
between the business tier and applications running in the presentation tier.

9.7.3 Device access model

Figure 9.4 depicts the full architecture of the CMW device access model. The typical use of this
communication model is between Java applications running in the middle tier and CMW equip-
ment servers running in FECs. These processes communicate together through the Remote Device
Access (RDA) API, which is available for both Java and C++ languages.

Within the device access model, all accelerator equipment can be accessed as “devices”. A
device is a named entity within the control system, which normally corresponds to a physical
device (e.g., beam position monitor, power converter) or to a virtual controls entity (e.g., transfer
line). Conceptually, each device has a number of properties that characterise its state. By getting
the value of a property, the state of the device can be read. Accordingly, a device can be controlled
by setting one of its properties with the required value. ‘Get’ and ‘Set’ operations can be either
synchronous or asynchronous. In addition to the Get and Set operations on device properties, it
is possible to monitor changes to the property via listeners (callbacks). It is often necessary to
specify under which conditions the operation has to take place, for instance, to which cycle of the
machine the operation applies. These conditions are commonly referred to as context or filter. A
list of properties, together with their type description and the semantic of the assessors, is referred
to as a contract. Contracts typically serve a specific purpose, such as measurements or settings of a
device.

– 109 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

9.7.4 Messaging model

Complementary to the device access model, the messaging model allows any software process to
send and receive asynchronous messages in a loosely coupled way. Various application programs
for accelerator controls naturally exchange data via asynchronous messages: timing and logging
events, notifications, and alarms are typical examples of data which is asynchronously generated
from a various set of producers, and which is potentially of interest for multiple consumers. The
LHC control system software relies on the Java Message Service (JMS) as the messaging solution
for Java-based controls application. The JMS specification adds a standard and vendor-independent
API that enables the development of portable, message-based applications in the Java program-
ming language. Moreover, JMS is a strategic technology for the Java 2 Platform Enterprise Edi-
tion (J2EE). The LHC Alarm Service is a typical example of a messaging system relying on the
publish-and-subscribe paradigm: it subscribes to alarm notifications published by several processes
and, after processing, redistributes the result to dedicated consoles and any other controls software
component that subscribed to the appropriate alarm content hierarchy.

9.7.5 The J2EE framework for machine control

Applications controlling the LHC beams must handle a great variety of tasks, such as visualisation
of data, and significant computation, together with database and equipment access. These applica-
tions rely on several services such as security, transactions (to make sure that complex operations
are performed automically), and remote access or resource management. The requirements dictate
a move towards a modular and distributed architecture. Such an architecture offers a clear sepa-
ration between the GUI (the user interface), the control (the core business of the application), the
model (the abstract model of the accelerator control), and the devices (the physics equipment) that
are controlled.

For LHC, a 3-tier architecture is being implemented, in which the middle-tier is responsible
for providing all services and for coordinating the client applications running on the operator con-
soles. In this architecture, shown in figure 9.4, applications are running both in the operational
consoles of the presentation tier and in dedicated servers of the middle-tier. The consoles are re-
sponsible for the GUI applications and translate the operator’s actions into command invocations in
the middle-tier. The middle-tier, through its centralised and shared processing power, is in charge
of accessing databases and accelerator devices. The middle-tier also ensures the coherency of op-
erator actions and shelters resources. It enforces separation between presentation and application
logic and provides shared services to many clients.

To achieve this new programming model, a platform is needed to support the middle-tier.
The platform provides the infrastructure with all the necessary common basic services, i.e., all
parts of a control system that are not specific to accelerator controls. By using such a platform,
the developers can concentrate on writing code for the accelerator control components, such as
parameter management, setting generation, cycle handling, and trim management; they do not
have to write system level services. The platform of choice today is the J2EE, which is an industrial
standard defined by a set of specifications and APIs, implemented by many vendors. J2EE is based
on the Java programming language and on a component model known as Enterprise JavaBeans
(EJB). Components are the key technology used to write a modular object-oriented distributed

– 110 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Figure 9.5: The J2EE Architecture.

application. EJB components are “Lego R© pieces” that implement a set of interfaces, allowing
them to run inside a so-called “EJB container”.

As shown in figure 9.5, developers write accelerator-specific code in the form of EJB compo-
nents, and the EJB container provides the necessary infrastructure to run them, such as remote ac-
cessibility, components management, concurrency support, fault tolerance, high availability, scala-
bility, resource pooling, transaction management, and security.

To summarise, the 3-tier approach and the J2EE framework are the basis on which the controls
for the LHC are built. This allows effort to be focused on the LHC controls challenges and not
on the infrastructure. It exploits existing technology and provides the modular and distributed
architecture needed.

9.7.6 The UNICOS framework for industrial controls

Reflecting a trend of the last decade, a single industrial supplier has been chosen for the procure-
ment of the hardware and software for the control of the cryogenic equipment and experimental
magnets installed in the LHC accelerator complex. This control system is referred to using the
acronym UNICOS, standing for UNified Industrial COntrol System. UNICOS builds on a classic
industrial controls architecture, using the PVSS (object-oriented process visualization and control
system) SCADA in the Supervision layer, Schneider Quantum PLCs for process control at the
Control layer and Schneider Premium PLCs to connect process channels in the Field layer (an
alternative is Quantum remote I/O). Communication is based on Ethernet and FIPIO (Factory In-
strumentation Protocol Input Output). The software design is an evolution of an object-oriented
philosophy used with former control systems [55]. In this approach, each process device (sen-

– 111 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

sor, actuator, or set of devices constituting a process entity) is modelled as an object. This object
integrates the process behaviour and the GUI.

9.7.7 The UNICOS object model

In the UNICOS concept, the object implementation is split into two parts:

• The GUI functionality - programmed in the SCADA.

• The process behaviour - programmed in the PLC.

The GUI part includes the interaction with the operator by means of graphical components and
dedicated panels called “faceplates”; these GUIs inform the operator of the object status, and allow
him to send orders. The PLC part contains the process behaviour of the object. The object is linked
to the plant through I/O channels that may be linked to the PLC via either a fieldbus or a direct I/O
connection. The SCADA and PLC object parts are connected together by a communication layer
based on the TCP-Modbus protocol. As shown in figure 9.6, each object has several interfaces and
receives the following information:

• Requests from the operator via the SCADA object. These requests are transmitted to the
PLC by manual requests through the communication middleware.

• Configuration parameters (GUI or PLC) set during the programming phase and accessible
for modification by a program specialist.

• Information from the process (process inputs), consisting of analogue or binary values from
sensors and status of other objects.

• Orders from the control logic programmed into an object of a higher hierarchical level via
the Auto Requests.

Three main types of object are defined in the UNICOS architecture:

• Input-output objects which provide the interface to the plant. They link the devices and
actuators to the control system. Some basic treatments may be embedded in these objects.
Input/output channels are exclusively accessed through such objects.

• Field objects that represent hardware elements, such as valves, heaters, motors, and other
devices. Each type of field object has its own associated process logic. This logic integrates
specific functions (e.g., alarm generation, transition between set points, interlocking).

• Process control objects that control equipment units grouping several field objects and/or
other process control objects. The process logic of these objects is split between a standard
part (insuring a homogeneous interface to the environment) and a specific part to handle the
process to control.

– 112 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Figure 9.6: The UNICOS Object Model.

9.8 Control room software

9.8.1 Software for LHC beam operation

The LHC control room applications will be based on a set of common control system services and
components, in order to avoid duplication of effort and solutions. The operational software devel-
opment process relies on common development tools, guidelines, and procedures for construction,
testing, integration, deployment, and change management.

9.8.2 Software requirements

The LHC aims at injecting, accelerating, and colliding beams with well controlled beam param-
eters in an efficient, reliable, and reproducible manner. This is a non-trivial task, since the small
aperture, the high stored beam energy, and the sensitivity of the machine to beam losses impose
very tight accelerator physics constraints. The superconducting magnets will generate field errors
that have large static and dynamic components. The destructive power of the LHC beams and the
low tolerances to beam losses will place very stringent demands on the LHC control system. A
non-exhaustive list of the main software application categories for LHC is given below:

• On-line monitoring of the state and tolerances of every LHC component and interlock sys-
tem.

– 113 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

• Measurements to allow for synchronised acquisition as part of scans, feedback, or at a given
point in the ramp.

• Real time control to implement feedback on key beam parameters (orbit, tune, chromatic-
ity), plus the feed-forward of corrections from the reference magnets.

• On-line modeling including calculation of parameter variations, and feed-forward from the
machine into the model.

• Automatic sequencer to allow complicated sequences for injection and ramp to be per-
formed systematically.

• Fixed displays including transfer lines, beam size, bunch currents, mountain range turn-by-
turn, tune FFT, beam loss monitors, global orbit plus crossing angles, beam separation, and
transverse position along a batch.

• Settings management system to deal with the generation and management of complex set-
tings.

• Fast, accurate control of the main beam parameters in both the physics coast and during
injection and ramping.

• Trim facility incorporating persistent versus geometric correction, scaling, accumulation,
smoothing out of errors and corrections, and time and history dependency of errors.

• Communication with experiments and other major systems (cryogenics, vacuum, technical
services).

• Scripting environment for ad-hoc rapid application development for machine development.

• Miscellaneous support applications such as an Electronic Logbook.

• Console Manager to launch and manage controls applications in a unique manner.

9.8.3 The software development process

The software development follows the Unified Software Development Process, a practical software
process model followed by many industrial OO projects. Java is the programming language cho-
sen for the implementation of the high-level services and control room applications, as it enables
platform-independent development. XML is playing an increasingly important role in the exchange
of data.

The software developers are provided with a suite of selected software tools for code op-
timisation, quality assurance, and testing, to guarantee the quality of the control room software.
Software configuration management facilities are provided on top of the archive engine (RCS) to
provide version management services, making it possible to trace and identify any component of an
operational application, and to deliver consistent operational software releases. In addition, tools
for code building and distribution are available to release operational software components in a
multi-versioned repository residing on dedicated fileservers (section 9.4).

– 114 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Operational software, once released, is deployed locally to the operators’ consoles using stan-
dard Java-distributed deployment technology, which guarantees automatic delivery of software up-
dates without operator intervention. Local deployment ensures the speed and performance required
by operations.

9.8.4 Software for LHC Industrial Systems

Several LHC accelerator industrial subsystems will be accessible from the control consoles via a
SCADA supervision interface. SCADA systems are used in a wide variety of industrial domains
and therefore typically provide a flexible, distributed, and open architecture to allow customisation
to a particular application area. In addition to basic SCADA functionality, these systems also
provide strong support for GUI tools, a set of standard interfaces to hardware, as well as an API
to enable integration with other applications or software systems. PVSS, the industrial SCADA
product recommended at CERN, has the following specific features:

• It can run in a distributed manner.

• It has multi-platform support (Linux and Windows).

• It is device oriented with a flexible structural concept.

• It has advanced scripting capabilities.

• It has a flexible API, allowing access to all features of PVSS from an external application.

The SCADA development process, in particular when based on frameworks such as UNICOS
(section 9.7.6), can be based mostly on configuration and graphic editors rather than programming.
A unique device configuration database contains all characteristics of the devices, including device
addressing, alarm, and data logging parameterisation.

9.9 Services for operations

9.9.1 Analogue signals transmission

While most signals from the LHC will be digitised for internal usage by the respective accelerator
systems, some are required for visualisation during tuning and measurement. These include some
200 signals, mainly in the 0 to 10 kHz range from the RF system, and over 300 signals with a typical
bandwidth of 50 MHz from the kicker systems for injection and beam extraction. In the injector
chain, the nAos system [56] is successfully used to fulfil the need for coherent acquisition and
display of analogue signals. The system’s main feature is the digitisation of signals in acquisition
crates as close as possible to their sources, thereby ensuring optimal fidelity. Whenever possible,
in order to save costly oscilloscope modules, signals are multiplexed, allowing some 100 signals to
be serviced by one crate containing four two-channel oscilloscope modules. The triggers for all the
oscilloscope modules are elaborated from the GMT distribution (section 9.5.1), ensuring a precise
time-correlation between signals. The digitised signals are sent through Ethernet to control room

– 115 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Figure 9.7: Snapshot of nAos GUI.

consoles, where a GUI application (figure 9.7) allows operators to monitor them on four-channel
“virtual oscilloscope” screens.

The nAos system is currently being upgraded to more modern, commercial hardware and
software platforms. The new version of the system is called Open Analogue Signals Informa-
tion System (OASIS). It will implement all the above features, including arbitration of resource
(i.e., oscilloscopes), allocation to clients, and additional functionality for LHC requirements. This
approach will ensure that signals from the injector chain may also be integrated into LHC opera-
tion; the older, lower energy machines are more richly instrumented by this system. As with all
LHC systems, OASIS must provide information to the Logging (section 9.9.3) and Post Mortem
(section 9.9.4) systems. Analogue signals will be monitored by compact PCI-based acquisition
systems; the total number of crates will depend on the amount of multiplexing achievable with
regard to the number of clients.

9.9.2 Alarms

The detection, collection, management, and distribution of information concerning abnormal situ-
ations ranging from severe alarm states to warning states, hereafter referred to as Fault States (FS),
uses one global system. The system will accept information concerning any problem associated
with the CERN accelerator complex and offer this information, in a structured way, to any inter-
ested party. The core part of this system will be the LHC Alarm SERvice (LASER), [57]. As a
result of a detailed technology survey, a 3-tier architecture was chosen and is now being imple-
mented according to the J2EE specification (see 9.7.5).

FS detection is performed (figure 9.5) in the resource tier by surveillance software written

– 116 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

by equipment specialists, application programmers, and operators. The LASER system offers a
standard interface for these sources to push a FS, by means of either a C or Java API based on
the messaging system. FS time stamping at the point of detection, using UTC time, down to the
microsecond level if needed, will be crucial in correlating data. The middle-tier will collect the FS
by subscribing to all FS sources. A number of services and facilities will be offered at this level
including:

• FS persistence.

• Logging of FS transitions using the LHC Logging facility.

• FS dependency and reduction management.

• FS browsing and interaction.

• Administration of the overall system.

• User and configuration management.

• Scaling, using clustering facilities.

• FS distribution according to a FS hierarchy, representing the interest of users.

Finally, the presentation tier will allow clients interested in those services to access them via a Java
client interface. The major user of this interface will be the alarm console, which will be used by
equipment groups and control centres to select, receive, and display FS, and in order to access all
LASER services. Important configuration facilities will allow the alarm console to be personalised.

9.9.3 Logging

The information to be logged is heterogeneous, but usually concerns values of variables that evolve
over time, for example cryogenic temperatures, vacuum pressures, magnetic field measurements,
bunch intensities, or beam profiles. The total number of logging variables will be on the order of
105-106, with logging frequencies up to 0.1 Hz. The main purpose of LHC logging is to improve
the machine performance and that of the individual subsystems. Therefore the recorded data will
be stored and kept accessible over consecutive years, in order to permit comparison of historical
data, off-line analysis to search for data correlations, and compilation of operational statistics.

For each of the logged records of the data variables, the date-time value is a key attribute,
and therefore correct “time stamping” is vital for the exactness of the data. For time stamping, the
usage of UTC is endorsed throughout the LHC Logging system (section 9.5.3), with microsecond
precision where applicable. In order to enable effective exploitation of the logged data by users
such as equipment engineers, control room operators, machine physicists, and CERN managers, the
LHC Logging system will employ web-enabled interfaces to graphically visualise the information
and to extract it to common desktop tools.

– 117 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

9.9.4 Post mortem

The LHC will be protected by over 10’000 interlock channels, thousands of quench detectors,
and around 3’000 beam loss monitors. Many tens of thousands of signals will be available for
the operators and engineers to interpret the circumstances of Beam and Power Aborts. The Quench
Protection System alone will provide around 80’000 signals for Alarms, Logging, and Post Mortem
purposes. Recovery from a perturbation to the nominal magnet cycling will require a minimum of 2
hours (7 TeV back to 7 TeV), which precludes learning by trial and error, as practiced with normal
conducting machines.

The LHC Post Mortem System (figure 9.8) [51, 58] is required as a suitable diagnostic tool.
The purpose of this system is:

• To ensure comprehensive monitoring of machine protection systems.

• To improve the operational efficiency of the LHC by:

– Providing diagnostics of power and beam aborts - the aim is to quickly identify the
origin of failures in order to initiate appropriate action and restore operation,

• Building long-term understanding of accelerator operation,

– Providing diagnostics for beam losses resulting from equipment malfunction.

• To explain the mechanism if damage occurs.

To achieve these aims, the post mortem data must be complete and coherent across systems.
While it is intended to make full use of diagnostics from Alarms and Logging, these systems will
not provide all the facilities required for the understanding of quenches and beam losses in the
LHC. In particular, the underlying hardware must capture transient data pertaining to conditions
prevailing before, during, and after such events. These transients may be relatively slow when they
are provoked by quenches; indeed, in this case, the Logging system will gather some pertinent
information, such as cryogenic temperatures. However, in the case of beam losses, the timescales
are extended downwards to turns of the machine.

In order to satisfy the aims of being complete and coherent across all LHC systems, the
following essential ingredients are required:

• Every piece of LHC equipment and diagnostic system must implement a circular Post Mortem
buffer of appropriate depth holding the latest data (for example, 1’000 turns for beam instru-
mentation).

• This data must be time stamped using a common clock, with a precision related to the corre-
sponding process (see table 9.2).

• The Post Mortem buffers must freeze at the Post Mortem timing event, or by self-triggering
in the case of the protection systems.

• Data must be self describing, so that it can be managed by the event builder and analysed by
generic tools.

– 118 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
1

Figure 9.8: The LHC Post Mortem Architecture.

The Post Mortem events will be large - several gigabytes - and therefore analysis must be
automatic in order to generate digested information for operators. After analysis, the information
must be stored in order to build up the longer term history and understanding of the machine. The
most relevant data will be stored for the lifetime of the LHC.

– 119 –


