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Chapter 7

Trigger

The LHCb experiment plans to operate at an average luminosity of 2×1032 cm−2 s−1 , much lower
than the maximum design luminosity of the LHC, reducing the radiation damage to the detectors
and electronics. Futhermore, the number of interactions per bunch crossing is dominated by single
interactions, which facilitates the triggering and reconstruction by assuring low channel occupancy.
Due to the LHC bunch structure and low luminosity, the crossing frequency with interactions visi-
ble1 by the spectrometer is about 10 MHz, which has to be reduced by the trigger to about 2 kHz, at
which rate the events are written to storage for further offline analysis. This reduction is achieved
in two trigger levels [214] as shown in figure 7.1: Level-0 (L0) and the High Level Trigger (HLT).
The L0 trigger is implemented using custom made electronics, operating synchronously with the
40 MHz bunch crossing frequency, while the HLT is executed asynchronously on a processor farm,
using commercially available equipment. At a luminosity of 2×1032 cm−2 s−1 the bunch cross-
ings with visible pp interactions are expected to contain a rate of about 100 kHz of bb̄-pairs. How-
ever, only about 15% of these events will include at least one B meson with all its decay products
contained in the spectrometer acceptance. Furthermore the branching ratios of interesting B meson
decays used to study for instance CP violation are typically less than 10−3. The offline analysis
uses event selections based on the masses of the B mesons, their lifetimes and other stringent cuts
to enhance the signal over background. For the best overall performance the trigger was therefore
optimised to achieve the highest efficiency for the events selected in the offline analysis, while
rejecting uninteresting background events as strongly as possible.

The purpose of the L0 trigger is to reduce the LHC beam crossing rate of 40 MHz to the rate
of 1 MHz with which the entire detector can be read out. Due to their large mass, B mesons decays
often produce particles with large transverse momentum (pT) and energy (ET) respectively. The
Level-0 trigger attempts to reconstruct:

• the highest ET hadron, electron and photon clusters in the calorimeters,

• the two highest pT muons in the muon chambers.

In addition, a pile-up system in the VELO estimates the number of primary pp interactions in each
bunch crossing. The calorimeters calculate the total observed energy and an estimate for the num-

1 An interaction is defined to be visible if it produces at least two charged particles with sufficient hits in the VELO
and T1–T3 to allow them to be reconstructible.
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Figure 7.1: Scheme of the LHCb trigger.

ber of tracks, based on the number of hits in the SPD. With the help of these global quantities events
may be rejected, which would otherwise be triggered due to large combinatorics, and would occupy
a disproportionate fraction of the data-flow bandwidth or available processing power in the HLT.

A Level-0 Decision Unit (DU) collects all the information and derives the final Level-0 trigger
decision for each bunch crossing. It allows for overlapping of several trigger conditions and for
prescaling.

The L0 trigger system is fully synchronous with the 40 MHz bunch crossing signal of the
LHC. The latencies are fixed and depend neither on the occupancy nor on the bunch crossing
history. All Level-0 electronics is implemented in fully custom-designed boards which make use
of parallelism and pipelining to do the necessary calculations with sufficient speed.

In order to be able to reduce the event rate from 1 MHz down to 2 kHz, the HLT makes
use of the full event data. The generic HLT algorithms refine candidates found by the Level-0
trigger and divide them into independent alleys (see section 7.2). The alleys to be followed are
selected from the Level-0 decision. The alley selections are based on the principle of confirming a
previous trigger stage by requiring the candidate tracks to be reconstructed in the VELO and/or the
T-stations. Requiring candidate tracks with a combination of high pT and/or large impact parameter
reduces the rate to about 30 kHz. At this rate interesting final states are selected using inclusive
and exclusive criteria.

Generally speaking, selection cuts are relaxed compared to the offline analysis, in order to
be able to study the sensitivity of the selections and to profit from refinements due to improved
calibration constants. A large fraction of the output bandwidth is devoted to calibration and moni-
toring. In order to monitor trigger efficiencies and systematic uncertainties both trigger levels can
be emulated fully on stored data.
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Figure 7.2: Overview of the Level-0 trigger. Every 25 ns the pile-up system receives 2048 chan-
nels from the pile-up detector, the Level-0 calorimeters 19420 channels from the scintillating pad
detector, preshower, electromagnetic and hadronic calorimeters while the Level-0 muon handles
25920 logical channels from the muon detector.

7.1 Level 0 trigger

7.1.1 Overview

As shown in figure 7.2, the Level-0 trigger is subdivided into three components: the pile-up system,
the Level-0 calorimeter trigger and the Level-0 muon trigger. Each component is connected to one
detector and to the Level-0 DU which collects all information calculated by the trigger systems to
evaluate the final decision.

The pile-up system aims at distinguishing between crossings with single and multiple visible
interactions. It uses four silicon sensors of the same type as those used in the VELO to measure
the radial position of tracks. The pile-up system provides the position of the primary vertices
candidates along the beam-line and a measure of the total backward charged track multiplicity.

The Calorimeter Trigger system looks for high ET particles: electrons, γ’s, π0’s or hadrons.
It forms clusters by adding the ET of 2×2 cells and selecting the clusters with the largest ET.
Clusters are identified as electron, γ or hadron based on the information from the SPD, PS, ECAL
and HCAL Calorimeter. The ET of all HCAL cells is summed to reject crossings without visible
interactions and to reject triggers on muon from the halo. The total number of SPD cells with a hit
are counted to provide a measure of the charged track multiplicity in the crossing.

The muon chambers allow stand-alone muon reconstruction with a pT resolution of ∼ 20%.
Track finding is performed by processing elements which combine the strip and pad data from
the five muon stations to form towers pointing towards the interaction region. The Level-0 muon
trigger selects the two muons with the highest pT for each quadrant of the muon detector.
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Figure 7.3: Overview of the Level-0 calorimeter trigger architecture.

The Level-0 DU collects all information from Level-0 components to form the Level-0 trig-
ger. It is able to perform simple logic to combine all signatures into one decision per crossing. This
decision is passed to the Readout Supervisor (see section 8.3) which transmits it to the front-end
electronics.

The latency of Level-0, i.e. the time elapsed between a pp interaction and the arrival of the
Level-0 trigger decision at the front-end electronics, is fixed to 4 µs. This time which includes the
time-of-flight of the particles, cable delays and all delays in the front-end electronics, leaves 2 µs
for the processing of the data in the Level-0 trigger to derive a decision.

7.1.2 Architecture

Calorimeter trigger

A zone of 2 by 2 cells is used, since it is large enough to contain most of the energy, and small
enough to avoid overlap of various particles. Ultimately, only the particle with the highest ET enters
into the trigger decision. Therefore, to minimize the number of candidates to be processed, only
the highest ET candidate is kept at this stage.

These candidates are provided by a three step selection system as shown in figure 7.3:

• a first selection of high ET deposits is performed on the Front-End card, which is the same
for ECAL and HCAL. Each card handles 32 cells, and the highest ET sum over the 32 sums
of 2× 2 cells is selected. To compute these 32 sums, access to cells in other cards is an
important issue.
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• the Validation Card merges the ECAL with the PS and SPD information prepared by the
preshower front-end card. It identifies the type of electromagnetic candidate, electron, γ

or π0. Only the highest ET candidate per type is selected and sent to the next stage. The
same card also adds the energy deposited in ECAL to the corresponding hadron candidates.
Similar cards in the PreShower crates compute the SPD multiplicity.

• the Selection Crate selects the candidate with the highest ET for each type, and also produces
a measure of the total ET in HCAL and the total SPD multiplicity.

The first two steps are performed on the calorimeter platform, at a location where the radi-
ation dose is expected to be below 50 Gy over the whole lifetime of the experiment, and where
single event upsets are expected to occur. Each component has been tested for radiation tolerance
and robustness against single event upsets. Anti-fuse FPGAs are used, as well as triple-voting
techniques.

The trigger interface is housed in one anti-fuse FPGA from ACTEL for ECAL/HCAL front-
end cards and in one flash EEPROM based FPGA for PS/SPD front-end boards. There is a large
data flow between these components at a frequency of 40 MHZ, through a dedicated backplane,
where interconnections are realized by point-to-point links running a multiplexed LVDS signals at
280 MHz. The same backplane is used for PreShower, ECAL and HCAL crates.

The validation card is a 9U board with 16 layers. Clusters, PS and SPD hit maps arrive
through the backplane via 20 LVDS links running at 280 MHz. The cluster identification is per-
formed by two ProAsic FPGAs from ACTEL. Electron, γ , hadron and π0 candidates are trans-
mitted to the selection crate via an 8-channel optical mezzanine which serializes data at 1.6 Gbps
and drives a ribbon of 12 fibres. The control of the validation and calorimeter front-end cards are
performed by a SPECS interface.

The selection crate is located in the counting house in a radiation free environment. It is a
modular system containing eight 16-layer 9U VME selection boards. The design of the selection
boards is unique and adapted to perform both the electromagnetic and the hadron clusters selection.
The electromagnetic cluster selection is performed on one board for each cluster type (electron, γ ,
π0) while the hadron selection requires three boards. The results of the two first boards are transmit-
ted to the third one where the final selection is performed. Finally, one board is used to sum the SPD
multiplicity. Inputs arrive via 28 optical links grouped into three ribbons of 12 fibres. High-speed
serial signals are deserialized by 28 TLK2501 chips.2 The selection of the highest ET candidate of
each type is performed by six FPGAs from the Xilink Virtex II family. The selected candidates are
sent to the Level-0 DU via a mezzanine with 1-channel high speed optical link. Inputs and outputs
of the Selection Boards are sent to the data acquisition system via two high speed optical links
connected to the TELL1 board. The Selection Boards are controlled by a credit card PC.

The types and total numbers of boards for the Level-0 Calorimeters Trigger are summarized
in table 7.1.
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Table 7.1: Boards of the Level-0 calorimeters trigger.

Boards Number

ECAL/HCAL front-end 246
PS/SPD front-end 100
8-channels optical mezzanine 80
1-channels optical mezzanine 40
Validation card 28
SPD Control board 16
Selection Board 8

Figure 7.4: Overview of the Level-0 muon architecture.

Muon trigger

An overview of the Level-0 muon architecture is given in figure 7.4 and a detailed description
in [215]. Each quadrant of the muon detector is connected to a Level-0 muon processor via 456
optical links grouped in 38 ribbons containing 12 optical fibres each. An optical fibre transmits
serialized data at 1.6 Gbps over a distance of approximately 100 meters. The 4 Level-0 muon
processors are located in the counting house, a place immune to radiation effects.

A L0 muon processor looks for the two muon tracks with the largest and second largest pT.
The track finding is performed on the logical pads. It searches for hits defining a straight line
through the five muon stations and pointing towards the interaction point. The position of a track
in the first two stations allows the determination of its pT. The final algorithm is very close to the
one reported in the Technical Proposal [1] and in the Muon Technical Design Report [164].

Seeds of the track finding algorithm are hits in M3. For each logical pad hit in M3, an
extrapolated position is set in M2, M4 and M5 along a straight line passing through the hit and the
interaction point. Hits are looked for in these stations in search windows termed Field Of Interest
(FOI) which are approximately centred on the extrapolated positions. FOIs are opened along the x-

2from Texas Instrument, USA.
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axis for all stations and along the y-axis only for stations M4 and M5. The size of the FOI depends
on the station being considered, the level of background and the minimum-bias retention allowed.
When at least one hit is found inside the FOI for each station M2, M4 and M5, a muon track is
flagged and the pad hit in M2 closest to the extrapolation from M3 is selected for a subsequent use.

The track position in station M1 is determined by making a straight-line extrapolation from
M3 and M2, and identifying, in the M1 FOI, the pad hit closest to the extrapolation point.

Since the logical layout is projective, there is a one-to-one mapping from pads in M3 to pads
in M2, M4 and M5. There is also a one-to one mapping from pairs of pads in M2 and M3 to pads
in M1. This allows the track finding algorithm to be implemented using only logical operations.

To simplify the processing and to hide the complex layout of the stations, the muon detector
is subdivided into 192 towers (48 per quadrant) pointing towards the interaction point. All towers
have the same layout with 288 logical pads3 each. Therefore, the same algorithm can be executed
in each tower. Each tower is connected to a processing element, the basic component of the Level-0
Muon processor.

To collect data coming from a tower spread over five stations and to send them to the process-
ing element, a patch panel close to the muon processor is used.

Processing elements have to exchange a large number4 of logical channels with each other to
avoid inefficiencies on borders of towers. The topology of the data exchange depends strongly on
the location of the tower.

A processing element runs 96 tracking algorithms in parallel, one per M3 seed, on logical
channels from a tower. It is implemented in a FPGA named Processing Unit (PU). A process-
ing board contains four PUs and an additional FPGA to select the two muons with the highest
transverse momentum within the board. A Level-0 Muon processor consists of a crate housing 12
Processing Boards, a custom backplane and a controller board. The custom backplane is manda-
tory to exchange logical channels between PUs. The controller board collects candidates found by
the 12 Processing Boards and selects the two with the highest pT. It also distributes signals coming
from the TTC.

The Level-0 Muon implementation relies on the massive use of multigigabit serial links de-
serialized inside FPGAs. Processors are interfaced to the outside world via optical links while
processing elements are interconnected with high speed copper serial links.

The Processing Board contains five FPGAs from the Altera Stratix GX family and 92 high
speed serial links with serialiazers and deserializers embedded in FPGAs. The board sends data
to the data acquisition system via two high speed optical links. The processing board is remotely
controlled via Ethernet by a credit card PC running Linux. The size of the printed circuit is 366.7×
220 mm and is composed of 18 layers and a total of 1512 components. The power consumption is
less than 60 W.

The Controller Board contains two FPGAs from the Stratix GX family. The board shares
many common functionalities with the Processing Board: the same credit card PC, the same
mechanism to send information to the data acquisition system. The printed circuit measues

3 48 pads from M1, 2×96 pads from M2 and M3, 2×24 pads from M4 and M5.
4 A processing element handles 288 logical pads. It sends a maximum of 224 and receives a maximum of 214 logical

channels from neighbouring elements.
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Table 7.2: Boards of the Level-0 muon trigger.

Boards Number

Processing Board 48
Controller Board 4
Backplane 4

366.7× 220 mm and is composed of 14 layers with 948 mounted components. The power con-
sumption is less than 50 W.

The backplane contains 15 slots: 12 for the Processing Boards, one for the Controller Board
and two for test. It distributes power supplies, signals coming from the TTC, and assures the
connectivity between the processing elements via 288 single-ended links (40 MHz) and 110 dif-
ferential high speed serial links (1.6 Gbps). The size of the 18-layer printed circuit board is
395,4×426,72 mm.

The types and total numbers of boards for the Level-0 Muon Trigger are summarized in
table 7.2.

Pile-Up system

The pile-up system consists of two planes (A and B) perpendicular to the beam-line and located up-
stream of the VELO (see figure 5.1). Each 300 µm thick silicon plane consists of two overlapping
VELO R-sensors which have strips at constant radii, and each strip covers 45◦. In both planes the
radii of track hits, ra and rb, are measured. The hits belonging to tracks from the same origin have
the simple relation k = rb/ra, giving:

zv =
kza− zb

k−1
(7.1)

where zb , za are the detector positions and zv is the position of the track origin on the beam axis,
i.e. the vertex. The equation is exact for tracks originating from the beam-line. All hits in the
same octant of both planes are combined according to equation 7.1 and the resulting values of zv

are entered into an appropriately binned histogram, in which a peak search is performed, as shown
in figure 7.5. The resolution of zv is limited to around 3 mm by multiple scattering and the hit
resolution of the radial measurements. All hits contributing to the highest peak in this histogram
are masked, after which a second peak is searched for. The height of this second peak is a measure
of the number of tracks coming from a second vertex. A cut is applied on this number to detect
multiple interactions. If multiple interactions are found, the crossing is vetoed.

The architecture of the pile-up system is shown in figure 7.6. It uses the signals of the inte-
grated comparators of the Beetle chips located on the four hybrids. The outputs of neighbouring
comparators are OR-ed in groups of four, resulting in 256 LVDS links running at 80 Mbit/s per
hybrid, which send the Level-0 signals to eight Optical Transmission Boards. Two Optical Trans-
mission Boards cover one quadrant. They time align and multiplex input hit maps to four Vertex
Processing Boards. Hit maps of one bunch crossing are sent to one of the four Vertex Processing
Board (VEPROB) in four consecutive clock cycles, while hit maps of the following bunch crossing
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Figure 7.5: The basic principle of detecting vertices in an event. The hits of plane A and B are
combined in a coincidence matrix. All combinations are projected onto a zv-histogram. The peaks
indicated correspond to the two interaction vertices in this particular MonteCarlo event. After the
first vertex finding iteration, the hits corresponding to the two highest bins are masked, resulting in
the hatched histogram.

Figure 7.6: Overview of the Level-0 pile-up Architecture.

are sent to the second VEPROB in four consecutive clock cycles. Bunch-crossings are distributed
over the four Vertex Processing Boards in a round-robin fashion. The Optical transmision board is
a 9U board controlled by a SPEC interface via the VELO control board.

Vertex Processing boards are 9U boards located in the radiation-free electronics barracks.
They are connected to the Optical Transmission boards via 24 high speed optical links. The vertex
processing board is the key component of the pile-up system. It houses a large FPGA from Xilinx
Virtex II family which runs the pile-up algorithm. A board handles one of four events and sends
its trigger decision to the output board via a high speed copper link (1.6 Gbps). The VEPROB is
controlled by a credit card PC and sends the inputs and outputs of the vertex finding algorithm to
the DAQ system via two high speed optical links.

The output board is a simple 9U board multiplexing the inputs from the vertex processing
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Table 7.3: Boards of the pile-up system.

Boards Number

Hybrids 4
Optical Transmition Board 8
Vertex Processing Board 4
Output Board 1

Figure 7.7: Level-0 DU architecture.

board and sends the number of primary pp interactions for each bunch crossing to the Level-0 DU.
In addition, the output boards make histograms of trigger decisions made by the pile-up system.
These histograms are accessible via the ECS interface.

The types total numbers of boards for the pile-up system are summarized in table 7.3.

Decision Unit

The Level-0 DU receives information from the calorimeter, muon and pile-up sub-triggers at
40 MHz, which arrive at different fixed times. The computation of the decision can start with a
sub-set of information coming from a Level-0 sub-trigger, after which the sub-trigger information
is time aligned. An algorithm is executed to determine the trigger decision. The decision is sent to
the Readout Supervisor, which makes the ultimate decision about whether to accept an event or not.
The Readout Supervisor is able to generate and time-in all types of self-triggers (random triggers,
calibration, etc.) and to control the trigger rate by taking into account the status of the different
components in order to prevent buffer overflows and to enable/disable the triggers at appropriate
times during resets.

The architecture of the Level-0 DU is shown in figure 7.7. For each data source, a Partial
Data Processing system performs a specific part of the algorithm and the synchronisation between
the various data sources. Then a trigger definition unit combines the information from the above
systems to form a set of trigger conditions based on multi-source information.

The trigger conditions are logically OR-ed to obtain the Level-0 decision after they have been
individually downscaled if necessary.
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Figure 7.8: Overview of ribbon optical link.

The Level-0 DU is based on the TELL1 board with optical cards replaced by a single mezza-
nine in which Level-0 DU hardware is implemented. Inputs are received on two ribbons of 12 high
speed optical links. Serial signals are deserialized by a 24 TLK2501 chip.5 and sent to two large
FPGAs from the Stratix Family. Electron, γ , π0, hadron and muon candidates as well as interme-
diate and final decisions are sent to the DAQ via the TELL1 mother boards. This information can
be used later on by the HLT to confirm the Level-0 candidates using more refined algorithms.

7.1.3 Technology

The implementation of the Level-0 trigger relies on the massive use of large FPGAs, high speed
serial links and common techniques which simplify debugging and commissioning.

High speed links

The transport of information from the front-end electronics to Level-0 trigger boards located in the
barrack is based on three concepts:

• serialization of the detector data;

• use of optical links as transport media;

• use of high density devices.

High speed serial transmission reduces the number of signal lines required to transmit data from
one point to another. It also offers a high level of integration with many advantages: high reliability

5from Texas Instrument, USA.
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for data transfer over 100 meters; complete electrical isolation avoids ground loops and common
mode problems. In addition, the integration of several high speed optical links in a single device
increases data rate while keeping a manageable component count and a reasonable cost.

Ribbon optical links integrate twelve optical transmitters (fibres, receivers) in one module.
The important benefit of ribbon optical links is based on low-cost array integration of electronic
and opto-electronic components. It also results a low power consumption and a high level of
integration.

An overview of the ribbon optical link developed for the Level-0 trigger is shown in fig-
ure 7.8. The emitter stage relies on twelve serializer chips connected to one optical transmitter.
The serializer is the GOL, a radiation hard chip designed by the CERN microelectronic group,
which every 25 ns, transforms a 32-bit word into a serial signal with a frequency of 1.6 GHz using
a 8B/10B encoding. High frequency signals are converted into optical signals by the 12-channel
optical transmitter from Agilent HFBR-772BE. The module is designed to operate multimode fi-
bres at a nominal wavelength of 850 nm.

Initially the LHC clock distribution was not intended to be used for optical data transmission
and hence, does not fulfill the severe jitter constraints required by high speed serializers. The GOL
requires a maximum jitter of 100 ps peak to peak to operate correctly whereas the LHC clock jitter
is as large as 400 or 500 ps. To reduce the jitter, a radiation hard chip, the QPLL, designed by the
CERN microelectronics group is used. It filters out the jitter up to an acceptable value with the
help of a reference quartz crystal associated to a phase locked loop.

The emitter side is close to the detector in a place where the radiation dose is below 50 Gy
over 10 years where single event upsets (SEU) are expected to occur. The GOL and QPLL chips
are radiation hard chips immune to SEU. However, the optical transceiver is a commercial com-
ponent designed to work in an environment free of radiation. An irradiation campaign took place
at the Paul Scherrer Institute in December 2003. The component was found to work within its
specifications up to a total dose of 150 Gy. The cross-section for single event upsets is equal to
(4.1±0.1)×10−10 cm2 per single optical link. The expected SEU rate is 1 every 220 minutes for
the Level-0 muon trigger. When this happens, a single optical link emitter is not synchronized with
its receiver anymore. All emitter/receiver pairs are resynchronized automatically at the end of each
LHC cycle. Therefore, the link will not transmit data during a maximum of one LHC cycle or
89 µs. The corresponding inefficiency is negligible.

The physical media between the front-end electronic boards and the Level-0 trigger board
consist of ribbons of twelve fibres with MPO connectors on both sides (∼ 10 m.), MPO-MPO
patch panels, long cables containing eight ribbons with MPO connectors (∼ 80 m.), fanout panels
(MPO-MPO or MPO-SC), short ribbons of twelve fibres (∼ 3 m) with MPO connector on one side
and a MPO or 12 SC connectors on the other side.

The receiving side is the mirror of the emitting side. Optical signals are converted into
1.6 Gbps serial electrical signals by the 12-channel optical receiver HFBR-782BE. The twelve
high-frequency signals are deserialized into 16-bit words at 80 MHz by twelve TLK2501 chips.
The receiving side is located in the counting room. Therefore standard components can be used. In
the muon processing board, where the density of input signal is high, TLK2501 chips are replaced
by serializers and deserializers embedded in the Stratix GX FPGA.
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The routing of the differential high speed traces between serializer/deserializer and the optical
transceiver requires considerable care since the geometry of the tracks must be totally controlled
to guarantee good impedance matching and to minimize electromagnetic emissions to the environ-
ment as well as sensitivity to electromagnetic perturbations from the environment.

The performance of the optical link has been measured with several setups in different ways.
The bit error ratio measured with Lecroy SDA11000 Serial Data Analyser is below 10−16 for a
single fibre of 100 m long.

Field Programmable Gate Arrays

Three FPGA technologies are used in the Level-0 trigger. They are characterized by the way they
are configured:

• Anti-fuse based FPGAs (ACTEL AX family), that can be programmed only once;

• Flash-EEPROM based FPGAs (ACTEL pro-ASIC family), that can be erased and repro-
grammed;

• RAM based FPGAs (Altera Acex, Flex, Stratix and Stratix GX families or Xilinx Virtex
family) that can be reprogrammed an unlimited number of times.

Anti-fuse and flash FPGAs are used in the front-end boards close to the detector and are
therefore exposed to significant radiation doses. These components have been tested in heavy ion
beams and have shown very low sensitivity to single event upsets and single event latch-up. Special
mechanisms such as triple-voting or horizontal and vertical parity are implemented to increase the
protection of registers containing critical data. Dose effects begin to appear in Flash based FPGAs
for doses an order of magnitude above the total dose received during 10 years by the trigger front-
end electronics.

RAM-based FPGAs are known to be very sensitive to single event upsets. For this reason
their use is restricted to boards located in the barracks which is a radiation free area.

All the FPGAs used in the trigger provide for good visibility of internal node behavior during
the debug phase by providing embedded logic analyzer features (Silicon Explorer for ACTEL,
SignalTap for the largest components of the Altera family and Chipscope for the Xilinx family).

Debugging and monitoring tools

Each Level-0 trigger board includes either a credit card PC or a SPECS component interfaced to
the embedded FPGAs by a custom 16-bit bus. By this means the operation of any of the FPGAs is
controlled and error detection mechanisms, such as error counters, spy and snooping mechanisms
are implemented.

To test a complete sub-trigger in stand-alone mode, a data injection buffer to substitute input
data is implemented. Results of the processing can be read back via the credit card PC at the output
of dedicated SPY memories

The level-0 trigger is a very complex system. Any malfunctions can therefore be difficult
to understand and interpret. At each stage the input and results of the processing are logged. In
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Figure 7.9: Flow-diagram of the different trigger sequences.

addition, a software emulator was developped which reproduces the behaviour of the hardware at
the bit level. By comparing results computed by the hardware with those of the emulator run on
the same input data, any faulty components can quickly be located.

7.2 High Level Trigger

The High Level Trigger (HLT) consists of a C++ application which runs on every CPU of the Event
Filter Farm (EFF). The EFF contains up to 2000 computing nodes and is described in section 8.
Each HLT application has access to all data in one event, and thus, in principle, could execute the
off-line selection algorithms. However, given the 1 MHz output rate of the Level-0 trigger and
CPU power limitations, the HLT aims to reject the bulk of the uninteresting events by using only
part of the full event data. In this section, the algorithm flow is described which, according to
MonteCarlo simulation studies, is thought to give the optimal performance within the allowed time
budget. However, it should be kept in mind that since the HLT is fully implemented in software, it
is very flexible and will evolve with the knowledge of the first real data and the physics priorities
of the experiment. In addition the HLT is subject to developments and adjustments following the
evolution of the event reconstruction and selection software.

A schematic of the overall trigger flow is shown in figure 7.9. Level-0 triggers on having at
least one cluster in the HCAL with Ehadron

T > 3.5 GeV, or the ECAL with Ee, γ, π0

T > 2.5 GeV, or a
muon candidate in the muon chambers with pµ

T > 1.2 GeV, or pµ1
T + pµ2

T > 1. GeV, where µ1 and µ2

are the two muons with the largest pT. The above thresholds are typical for running at a luminosity
of 2× 1032 cm−2s−1, but depend on luminosity and the relative bandwidth division between the
different Level-0 triggers. All Level-0 calorimeter clusters and muon tracks above threshold are
passed to the HLT as part of the Level-0 trigger information as described in section 7.1.2, and will
be referred to as Level-0 objects henceforward.

The HLT is subdivided in two stages, HLT1 and HLT2. The purpose of HLT1 is to reconstruct
particles in the VELO and T-stations corresponding to the Level-0 objects, or in the case of Level-0
γ and π0 candidates to confirm the absence of a charged particle which could be associated to these
objects. This is called Level-0 confirmation, and the details of how this is achieved within the
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CPU time budget is explained below. HLT1 should reduce the rate to a sufficiently low level to
allow for full pattern recognition on the remaining events, which corresponds to a rate of about 30
kHz. At this rate HLT2 performs a combination of inclusive trigger algorithms where the B decay
is reconstructed only partially, and exclusive trigger algorithms which aim to fully reconstruct B-
hadron final states.

7.3 HLT1

HLT1 starts with so-called alleys, where each alley addresses one of the trigger types of the Level-0
trigger. About∼ 15% of the Level-0 events are selected by multiple triggers, and will consequently
pass by more than one alley. To confirm the Level-0 objects each alley makes use of the following
algorithms:

L0→T: The Level-0 objects are assumed to originate from the interaction region, which
defines the whole trajectory of the candidate in the spectrometer. So-called T-seeds are recon-
structed in the T-stations, decoding only the hits in a window around the trajectory, or in case of
the calorimeter clusters the two trajectories corresponding to the two charge hypothesis. The seeds
are required to match the Level-0 object in both space and momentum.

L0→VELO: VELO-seeds are reconstructed in two stages. First the information from the
R-sensors are used to reconstruct 2D-tracks. The χ2 is calculated for the matching of a 2D track
with the Level-0 object, and only candidates with a sufficiently low χ2 are used to reconstruct a
VELO-seed using the φ -sensor information. These VELO-seeds in turn are required to match the
Level-0 object with a sufficiently small χ2. In addition the 2D-tracks are used to reconstruct the
primary vertexes in the event [216].

VELO→T: The VELO-seeds above define a trajectory in the T-stations, around which a T-
seed is reconstructed completely analogue to the L0→T algorithm described above.

T→VELO: this algorithm finds the VELO-seeds which match a T-seed, using an algorithm
analogue to the L0→VELO algorithm, but now starting from a T-seed, rather than a Level-0 object.

Each HLT1 alley uses a sequence of the above algorithms to reduce the rate. An algorithm
common to all alleys is used for computing the primary vertex with the 2D tracks reconstructed in
the VELO. While the alleys are operating independently, care has been taken to avoid having to
reconstruct the same track or primary vertex twice to avoid wasting precious CPU power.

While the bandwidth division between the alleys has not been defined, the performance of the
alleys will be illustrated with two typical alleys, the muon and hadron alleys running at a luminosity
of 2×1032 cm−2s−1.

The HLT1 µ-alley input rate will be ∼230 kHz, and contain 1.2 L0µ objects per event.
L0µ →T reduces the rate to 120 kHz, while the number of candidates increases to 1.8 T-seeds per
event. T→VELO reduces the rate to 80 kHz. Requiring the remaining candidates to have an impact
parameter to any primary vertex larger than 0.1 mm reduces the rate to 10 kHz. The HLT1 hadron-
alley input rate will be ∼600 kHz, and contain 1.3 L0hadron objects per event. L0hadron →VELO,
requiring a 0.1 mm impact parameter of the VELO-seeds to any primary vertex reduces the rate to
300 kHz which contain 2.2 VELO-seeds per event. VELO→T reduces this rate to 30 kHz with
1.2 candidates per event. Since this rate is still too large for the HLT2 stage, a further reduction is
obtained by requiring a VELO-track with a distance of closest approach to the confirmed Level-0
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track of less than 0.2 mm, and a pT of at least 1 GeV. This reduces the rate to 11 kHz with 3.2
candidate secondary vertices per event. The other HLT1 alleys employ similar strategies.

7.4 HLT2

The combined output rate of events accepted by the HLT1 alleys is sufficiently low to allow an
off-line track reconstruction as described in section 10.1. The HLT-tracks differ from the off-line
in not having been fitted with a Kalman filter to obtain a full covariance matrix since this is too
CPU intensive. Prior to the final selection, a set of tracks is selected with very loose cuts on their
momentum and impact parameter. These tracks are used to form composite particles, such as
K∗→ K+π−, φ → K+K−, D0→ hh, Ds→ K+K−π− and J/ψ → µ+µ−, which are subsequently
used for all selections to avoid duplication in the creation of final states.

The HLT2 stage uses therefore cuts either on invariant mass, or on pointing of the B momen-
tum towards the primary vertex. The resulting inclusive and exclusive selections aim to reduce
the rate to about 2 kHz, the rate at which the data is written to storage for further analysis. The
exclusive triggers are sensitive to tracking performance, while the inclusive triggers select partial
B decays to φX, J/ψX, D∗X, µ±X, µ±hX and µ+µ−X and therefore are less dependent on the
on-line reconstruction. However, the exclusive selection of these channels produces a smaller rate,
thus allowing for a more relaxed set of cuts. The final trigger is the logical OR of the inclusive and
exclusive selections.

7.5 HLT monitoring

Each HLT1 alley and HLT2 selection produces summary information which is written to storage
for the accepted events. This summary contains the information of all tracks and vertexes which
triggered the event. It is foreseen to reserve a significant fraction of the output bandwidth for
triggers on semi-leptonic B-decays, hence a sample in which the trigger did not bias the decay of
the accompanying B-hadron. The summary information is used to check if an event would have
triggered, even if the B decay of interest would not have participated in the trigger. It therefore
allows to study the trigger performance. The summary information also guarantees that during the
analysis the trigger source of an individual event is known.

To assure that during off-line analysis the trigger conditions are known, the combination
of trigger algorithms with their selection parameters will be assigned a unique key, the Trigger
Configuration Key (TCK). All trigger configurations with their associated TCK are pre-loaded in
the EFF before a fill. To change from one trigger configuration to another one, for example to
follow the decaying luminosity in a fill, a new TCK must be selected. This TCK is attached by the
Time and Fast Control system (TFC, see section 8.3) to each event, and it steers the configuration
of the algorithms on the EFF and allows full traceability of the used configuration.
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