

RECEIVED: January 9, 2008 ACCEPTED: May 18, 2008 PUBLISHED: August 14, 2008

THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND EXPERIMENTS

The CMS experiment at the CERN LHC

CMS Collaboration

ABSTRACT: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to $10^{34} \text{ cm}^{-2} \text{s}^{-1}$ ($10^{27} \text{ cm}^{-2} \text{s}^{-1}$). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4π solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values ($|\eta| \le 5$) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

KEYWORDS: Instrumentation for particle accelerators and storage rings - high energy; Gaseous detectors; Scintillators, scintillation and light emission processes; Solid state detectors; Calorimeters; Gamma detectors; Large detector systems for particle and astroparticle physics; Particle identification methods; Particle tracking detectors; Spectrometers; Analogue electronic circuits; Control and monitor systems online; Data acquisition circuits; Data acquisition concepts; Detector control systems; Digital electronic circuits; Digital signal processing; Electronic detector readout concepts; Front-end electronics for detector readout; Modular electronics; Online farms and online filtering; Optical detector readout concepts; Trigger concepts and systems; VLSI circuits; Analysis and statistical methods; Computing; Data processing methods; Data reduction methods; Pattern recognition, cluster finding, calibration and fitting methods; Software architectures; Detector alignment and calibration methods; Detector cooling and thermo-stabilization; Detector design and construction technologies and materials; Detector grounding; Manufacturing; Overall mechanics design; Special cables; Voltage distributions.

Contents

CMS Collaboration						
1	Intr	oductio	n	1		
	1.1	Genera	al concept	2		
2	Sup	6				
	2.1	Overv	iew	6		
	2.2	Main features of the magnet components				
		2.2.1	Superconducting solenoid	6		
		2.2.2	Yoke	11		
		2.2.3	Electrical scheme	12		
		2.2.4	Vacuum system	13		
		2.2.5	Cryogenic plant	13		
		2.2.6	Other ancillaries	13		
	2.3	Operat	14			
		2.3.1	Cool-down	15		
		2.3.2	Charge and discharge cycles	15		
		2.3.3	Cold mass misalignment	17		
		2.3.4	Electrical measurements	18		
		2.3.5	Yoke mechanical measurements	23		
		2.3.6	Coil stability characteristics	23		
		2.3.7	Coil warm-up	25		
3	Inne	er track	26			
	3.1	Introdu	26			
		3.1.1	Requirements and operating conditions	27		
		3.1.2	Overview of the tracker layout	29		
		3.1.3	Expected performance of the CMS tracker	30		
		3.1.4	Tracker system aspects	32		
	3.2	Pixel d	33			
		3.2.1	Pixel system general	33		
		3.2.2	Sensor description	35		
		3.2.3	Pixel detector read-out	37		
		3.2.4	The pixel barrel system	43		
		3.2.5	The forward pixel detector	46		
		3.2.6	Power supply	53		
		3.2.7	Cooling	54		
		3.2.8	Slow controls	54		
	3.3	Silicor	55			
		3.3.1	Silicon sensors	55		

		3.3.2	Read-out system	56
		3.3.3	Silicon modules	62
		3.3.4	Tracker Inner Barrel and Disks (TIB/TID)	64
		3.3.5	Tracker Outer Barrel (TOB)	67
		3.3.6	Tracker EndCaps (TEC)	73
		3.3.7	Geometry and alignment	78
		3.3.8	Detector control and safety system	81
		3.3.9	Operating experience and test results	82
4	Elect	tromag	gnetic calorimeter	90
	4.1	Lead t	rungstate crystals	90
	4.2	The E	CAL layout and mechanics	92
	4.3	Photoc	detectors	96
		4.3.1	Barrel: avalanche photodiodes	96
		4.3.2	Endcap: vacuum phototriodes	98
	4.4	On-de	tector electronics	100
	4.5	Off-de	etector electronics	103
		4.5.1	Global architecture	103
		4.5.2	The trigger and read-out paths	104
		4.5.3	Algorithms performed by the trigger primitive generation	105
		4.5.4	Classification performed by the selective read-out	105
	4.6	Presho	ower detector	106
		4.6.1	Geometry	106
		4.6.2	Preshower electronics	107
	4.7	ECAL	detector control system	108
		4.7.1	Safety system	109
		4.7.2	Temperature	109
		4.7.3	Dark current	109
		4.7.4	HV and LV	110
	4.8	Detect	tor calibration	110
	4.9	Laser	monitor system	113
		4.9.1	Laser-monitoring system overview	114
	4.10	Energy	y resolution	116
5	Had	ron cal	orimeter	122
	5.1	Barrel design (HB)		122
	5.2	Endca	p design (HE)	131
	5.3	Outer	calorimeter design (HO)	138
	5.4	4 Forward calorimeter design (HF)		
	5.5	5 Read-out electronics and slow control		
	5.6	HF lur	minosity monitor	154
6	Forw	vard de	etectors	156

	6.1	1 CASTOR		156
	6.2	Zero d	legree calorimeter (ZDC)	159
7	The	The muon system		
	7.1	Drift tube system		165
		7.1.1	General description	165
		7.1.2	Technical design	168
		7.1.3	Electronics	174
		7.1.4	Chamber assembly, dressing, and installation	180
		7.1.5	Chamber performance	185
	7.2	Catho	197	
		7.2.1	Chamber mechanical design	200
		7.2.2	Electronics design	202
		7.2.3	Performance	207
	7.3	Resist	ive Plate Chamber system	216
		7.3.1	Detector layout	217
		7.3.2	Readout electronics	222
		7.3.3	Low voltage and high voltage systems	223
		7.3.4	Temperature control system	225
		7.3.5	Gas system	225
		7.3.6	Chamber construction and testing	230
	7.4	Optica	al alignment system	235
		7.4.1	System layout and calibration procedures	236
		7.4.2	Geometry reconstruction	243
		7.4.3	System commissioning and operating performance	243
8	Trig	Trigger		247
	8.1	Calori	meter trigger	248
	8.2	Muon	trigger	251
	8.3	Globa	l Trigger	258
	8.4	Trigge	er Control System	259
9	Data	Data Acquisition		
	9.1	Sub-d	etector read-out interface	263
	9.2	The Trigger Throttling System and sub-detector fast-control interface		265
	9.3	Testing		267
	9.4	The Event Builder		267
	9.5	The Event Filter		271
	9.6	5 Networking and Computing Infrastructure		273
	9.7	DAQ software, control and monitor		274
	9.8	9.8 Detector Control System		279
10	Dete	ector in	frastructures and safety systems	283
	10.1	Detect	tor powering	283

– xxvi –

	10.2	Detector	r cooling	285	
		10.2.1	Front-end electronics cooling	285	
		10.2.2	Cryogenics	285	
	10.3	Detector	r cabling	286	
	10.4	Detector	r moving system	287	
		10.4.1	Sliding system	287	
		10.4.2	Pulling system	287	
	10.5	The Det	ector Safety System	287	
		10.5.1	DSS Requirements	288	
		10.5.2	DSS Architecture	289	
		10.5.3	CMS Implementation of DSS	290	
	10.6	Beam an	nd Radiation Monitoring systems	290	
		10.6.1	Introduction	290	
		10.6.2	Protection systems	291	
		10.6.3	Monitoring systems	293	
11	Com	puting		297	
	11.1	Overview	W	297	
	11.2	Applicat	tion framework	298	
	11.3	Data for	mats and processing	299	
	11.4	Computi	ing centres	301	
	11.5	Computi	ing services	303	
	11.6	System of	commissioning and tests	305	
12 Conclusions					
CMS acronym list					
Bibliography					