The ATLAS Experiment at the CERN Large Hadron Collider

ATLAS Collaboration

ABSTRACT: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

KEYWORDS: ATLAS; LHC; CERN; Accelerator; Proton-proton collisions; Heavy-ion collisions; Minimum-bias events; Bunch-crossings; Pile-up; Superconducting magnets; Solenoidal field; Toroidal field; Magnetic field measurements; Hall probes; Inner detector; Charged-particle tracking; Vertex measurement; Pixel detectors; Silicon micro-strip detectors; Transition radiation; Time-over-threshold; Radiation-hard electronics; Fluorinert cooling; Carbon-fibre reinforced plastics; Optical fibres; Calorimetry; Sampling calorimeters; Liquid argon; Scintillator tiles; Electromagnetic and hadronic interactions; Forward calorimetry; Accordion geometry; Lateral segmentation; Longitudinal segmentation; Muon spectrometer; Precision-tracking chambers; Trigger chambers; Drift tubes; Thin-gap chambers; Resistive-plate chambers; Optical alignment systems; Forward detectors; Cerenkov light; Roman Pots; Zero-degree calorimetry; Trigger and data acquisition; High-level trigger; Event filter; Detector control system; Bandwidth; Processor farm; Electrons; Muons; Leptons; Photons; Jets; Taus; Missing transverse energy; b-tagging; Particle identification; Tracking algorithms; Vertexing algorithms; Impact parameter measurements.
Contents

The ATLAS Collaboration ii

1 Overview of the ATLAS detector 1
1.1 Physics requirements and detector overview 1
1.2 Tracking 5
1.3 Calorimetry 7
1.3.1 LAr electromagnetic calorimeter 8
1.3.2 Hadronic calorimeters 10
1.4 Muon system 11
1.4.1 The toroid magnets 12
1.4.2 Muon chamber types 13
1.4.3 Muon chamber alignment and B-field reconstruction 13
1.5 Forward detectors 14
1.6 Trigger, readout, data acquisition, and control systems 14
1.6.1 Trigger system 14
1.6.2 Readout architecture and data acquisition 15
1.7 Radiation, shielding, and interface to the LHC machine 16
1.7.1 Radiation levels 16
1.7.2 Shielding 16
1.7.3 Beam-pipe 17
1.7.4 LHC machine interface 17
1.8 Outline of the paper 18

2 Magnet system and magnetic field 19
2.1 Magnet system 19
2.1.1 Central solenoid 20
2.1.2 Barrel toroid 21
2.1.3 End-cap toroids 24
2.1.4 Magnet services 24
2.2 Magnetic field determination 29
2.2.1 Performance specifications and measurement concepts 29
2.2.2 B-field modelling 30
2.2.3 Magnetic field instrumentation and reconstruction 32
2.2.4 Solenoid-mapping measurements 33
2.2.5 Experimental validation of the field map in the muon spectrometer 35
2.2.6 Towards an overall field map for ATLAS data-taking 37

3 Background radiation and shielding 38
3.1 Introduction 38
3.2 Description of the shielding 39
3.3 Calculation of particle fluences and absorbed doses 42
 3.3.1 The inner-detector and calorimeter regions 43
 3.3.2 The muon spectrometer region 45
3.4 Background monitors 47
 3.4.1 Monitors in the inner detector 48
 3.4.2 Monitors in the muon spectrometer 48
 3.4.3 Network of detectors for radiation measurements 50
3.5 Activation 51

4 Inner detector 53
 4.1 Introduction 53
 4.2 Inner-detector sensors 56
 4.2.1 Pixel and SCT detector sensors 56
 4.2.2 TRT straw tubes 59
 4.3 Inner-detector modules 60
 4.3.1 Pixel modules and staves 60
 4.3.2 SCT modules 64
 4.3.3 TRT modules 68
 4.4 Readout of the inner detector 71
 4.4.1 Front-end electronics 71
 4.4.2 Data transmission and power-supply services and routing 77
 4.5 Electronics and detector power supplies and services 81
 4.6 Grounding and shielding of the inner detector 83
 4.7 Structure and mechanical integration of the inner detector 84
 4.7.1 Pixel structure and integration 86
 4.7.2 SCT structure and integration 88
 4.7.3 TRT structure and integration 92
 4.7.4 Integration and installation of the inner-detector components 94
 4.8 Inner-detector environment and cooling services 95
 4.8.1 Beam-pipe interface and operational aspects 95
 4.8.2 Inner-detector environmental gas 96
 4.8.3 Inner-detector cooling 98
 4.8.4 Inner-detector controls, safety and interlocks 100
 4.9 Performance status of the integrated inner detector 101
 4.9.1 Electrical performance of the integrated detector 101
 4.9.2 SCT and pixel cooling performance after integration 105
 4.10 Material distribution of the inner detector 105

5 Calorimetry 110
 5.1 Introduction 110
 5.2 Electromagnetic calorimetry 112
 5.2.1 Accordion geometry 112
 5.2.2 Barrel geometry 114
5.2.3 End-cap geometry
5.2.4 Shape and placement of the electromagnetic calorimeters
5.2.5 High-voltage distribution
5.2.6 Electronic boards and cables inside the cryostats
5.2.7 Quality-assurance tests
5.3 Hadronic calorimeters
5.3.1 Tile calorimeter
5.3.2 Hadronic end-cap calorimeters (HEC)
5.3.3 Forward calorimeters
5.4 Cryostats and associated feed-throughs
5.4.1 Cryostat description
5.4.2 Signal feed-throughs
5.4.3 High-voltage feed-throughs
5.5 Instrumentation in gap between cryostats
5.6 Calorimeter readout electronics, calibration and services
5.6.1 Readout electronics
5.6.2 Calorimeter calibration systems
5.6.3 Calorimeter power supplies and services
5.7 Test-beam measurements and results
5.7.1 Electromagnetic module performance
5.7.2 Hadronic end-cap performance
5.7.3 FCal performance
5.7.4 Tile-calorimeter performance

6 Muon spectrometer
6.1 Overview
6.2 Precision-tracking chambers
6.3 Monitored drift tube chambers
6.3.1 Structure and function of the drift tube
6.3.2 Mechanical structure
6.3.3 Signal path and readout electronics
6.3.4 Performance of the MDT chambers
6.4 Cathode-strip chambers
6.4.1 Layout of the CSC system
6.4.2 Spatial and time resolution
6.4.3 Mechanical design
6.4.4 Readout electronics
6.4.5 Performance of the CSC
6.5 Alignment system of the precision chambers
6.5.1 Alignment strategies
6.5.2 Optical alignment sensors
6.5.3 Layout of the alignment system
6.6 Trigger chambers
6.7 Resistive plate chambers
 6.7.1 Principle of operation
 6.7.2 Mechanical structure
 6.7.3 Signal path and readout electronics
6.8 Thin gap chambers
 6.8.1 Introduction
 6.8.2 Principle of operation
 6.8.3 Mechanical structure
 6.8.4 Signal path, readout, and detector controls
6.9 Commonalities in the muon system
 6.9.1 The gas supplies in the muon system
 6.9.2 Electronics services and power consumption

7 Forward detectors
 7.1 The LUCID detector
 7.1.1 Detector design
 7.1.2 Experimental results from test-beam and radiation tests
 7.1.3 LUCID installation in ATLAS
 7.2 The ALFA detector
 7.2.1 Experimental results from test-beam
 7.2.2 ALFA installation in ATLAS
 7.3 The zero-degree calorimeters
 7.3.1 ZDC module description
 7.3.2 Calibration and monitoring
 7.3.3 ZDC installation in ATLAS

8 Trigger, data acquisition, and controls
 8.1 Introduction to event selection and data acquisition
 8.2 The L1 trigger
 8.2.1 Calorimeter trigger
 8.2.2 Muon trigger
 8.2.3 Central trigger processor
 8.3 Data acquisition system and high-level trigger
 8.3.1 Overview
 8.3.2 Control
 8.3.3 Configuration
 8.3.4 Monitoring and information distribution
 8.3.5 Readout system
 8.3.6 L2 trigger
 8.3.7 Event-building
 8.3.8 Event filter
 8.3.9 Event output
 8.4 Implementation and capabilities of the DAQ/HLT
8.5 Detector control system

9 Integration and installation

9.1 Introduction
9.2 Organisational issues
9.3 Mechanical integration
 9.3.1 Envelopes (individual, global, dynamic)
 9.3.2 Survey and placement strategy
9.4 Infrastructure and detector services
 9.4.1 Civil engineering
 9.4.2 Electrical power distribution
 9.4.3 Air-conditioning and cooling systems
 9.4.4 Gas distribution
 9.4.5 Cryogenic systems
 9.4.6 Racks and cables
 9.4.7 Drag-chains and mobile services
 9.4.8 Grounding and electromagnetic compatibility
9.5 Support and access structures
 9.5.1 Feet and rail system
 9.5.2 Trucks
 9.5.3 Surrounding structures (HS and HO)
 9.5.4 Muon barrel access structures
 9.5.5 Big wheels
9.6 Detector installation
 9.6.1 Phase 1: infrastructure in the main cavern, feet and rails
 9.6.2 Phase 2: barrel calorimetry and barrel toroid
 9.6.3 Phase 3: end-cap calorimeters and muon barrel chambers
 9.6.4 Phase 4: muon big wheels, inner detector and completion of muon barrel
 9.6.5 Phase 5: end-cap toroid magnets and muon small wheels
 9.6.6 Phase 6: beam-pipe and forward shielding
9.7 Access and detector opening
 9.7.1 Access scenarios
 9.7.2 Movement system
9.8 Beam-pipe
9.9 Safety in ATLAS
 9.9.1 Organisation of safety
 9.9.2 Access control
 9.9.3 Safety systems
 9.9.4 Detector safety system
 9.9.5 Safety during operation
9.10 Interface to the LHC machine

10 Expected performance of the ATLAS detector
10.1 Introduction
 10.1.1 Realistic data challenge
 10.1.2 Combined test-beam
10.2 Reconstruction and identification of charged particles in the inner detector
 10.2.1 Track reconstruction
 10.2.2 Alignment of the inner detector
 10.2.3 Tracking performance for single particles and particles in jets
 10.2.4 Vertexing performance
 10.2.5 Particle identification, reconstruction of electrons and photon conversions
10.3 Muon reconstruction and identification
 10.3.1 Introduction
 10.3.2 Calibration and alignment
 10.3.3 Reconstruction strategies
 10.3.4 Muon reconstruction performance for single muons
 10.3.5 Reconstruction of $Z \rightarrow \mu\mu$ and $H \rightarrow \mu\mu\mu\mu$ decays
10.4 Electrons and photons
 10.4.1 Calibration and performance of the electromagnetic calorimeter
 10.4.2 Electron and photon reconstruction and identification
 10.4.3 Assessment of performance in situ with initial data
10.5 Jet reconstruction
 10.5.1 Jet clustering algorithms
 10.5.2 Input to jet reconstruction
 10.5.3 Jet calibration
 10.5.4 Jet signal characteristics
 10.5.5 Jet reconstruction performance
 10.5.6 Validation of jet calibration with in-situ measurements
10.6 Missing transverse energy
 10.6.1 Reconstruction and calibration of E_T^{miss}
 10.6.2 Evaluation of E_T^{miss} performance
 10.6.3 Measurement of E_T^{miss} direction
 10.6.4 Use of E_T^{miss} for mass reconstruction
 10.6.5 Fake E_T^{miss}
10.7 Hadronic τ-decays
 10.7.1 Track reconstruction in hadronic τ-decays
 10.7.2 Electromagnetic clusters in single-prong decays
 10.7.3 Identification of hadronic τ-decays and rejection of QCD jets
10.8 Flavour tagging
 10.8.1 Ingredients of b-tagging algorithms
 10.8.2 Likelihood-ratio tagging algorithms
 10.8.3 Jet activity and jet purification
 10.8.4 Expected b-tagging performance
 10.8.5 Soft-lepton tagging
10.9 Trigger performance
Overview
- 10.9.1 Overview 360
- 10.9.2 Selection strategy 360
- 10.9.3 Trigger menus 361
- 10.9.4 Examples of trigger performance 363
- 10.9.5 Trigger commissioning 368
- 10.9.6 Evolution to higher luminosities 370
- 10.9.7 Measurements of trigger efficiency from data 371

Outlook
- 11 Outlook 374
 - 11.1 Detector installation and hardware status 375
 - 11.2 Outlook on commissioning with data 377
 - 11.3 Future changes to the ATLAS detector system 379

ATLAS acronym list
- ATLAS acronym list 385

Bibliography
- Bibliography 390