The CERN Large Hadron Collider: Accelerator and Experiments

The ALICE experiment at the CERN LHC

ALICE Collaboration

Abstract: ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are $16 \times 16 \times 26$ m3 with a total weight of approximately 10 000 t.

The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010.

This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

Keywords: Instrumentation for heavy-ion accelerators; Instrumentation for particle accelerators and storage rings - high energy; Cherenkov and transition radiation; Gaseous detectors; Liquid detectors; Photon detectors for UV, visible and IR photons; Scintillators, scintillation and light emission processes; Solid state detectors; Calorimeters; Cherenkov detectors; dE/dx detectors; Gamma detectors; Large detector systems for particle and astroparticle physics; Particle
identification methods; Particle tracking detectors; Photon detectors for UV, visible and IR photons; Spectrometers; Time projection chambers; Timing detectors; Transition radiation detectors; Analysis and statistical methods; Computing; Data processing methods; Data reduction methods; Pattern recognition, cluster finding, calibration and fitting methods; Simulation methods and programs; Software architectures; Detector alignment and calibration methods; Detector cooling and thermo-stabilization; Detector design and construction technologies and materials; Detector grounding; Manufacturing; Overall mechanics design; Special cables; Voltage distributions.
Contents

The ALICE Collaboration iii

1 Introduction 1

1.1 ALICE experiment 1

1.2 Design considerations 2

1.2.1 Physics observables 2

1.2.2 Performance specification 2

1.3 Detector layout 6

1.3.1 Tracking detectors 6

1.3.2 Particle identification 6

1.3.3 Electromagnetic calorimeters 7

1.3.4 Muon spectrometer 7

1.3.5 Forward and trigger detectors 8

1.3.6 Trigger and data acquisition 8

2 Experimental area 9

2.1 Underground area and surface facilities 9

2.1.1 Detector integration 10

2.1.2 Safety infrastructure 11

2.2 Radiation monitoring and shielding installations 12

2.3 Magnets 13

2.3.1 Solenoid 13

2.3.2 Dipole 13

2.4 Beam pipe 14

2.5 Survey and alignment 17

3 Central detectors 18

3.1 Inner Tracking System (ITS) 18

3.1.1 Silicon Pixel Detector (SPD) 22

3.1.2 Silicon Drift Detector (SDD) 37

3.1.3 Silicon Strip Detectors (SSD) 46

3.2 Time-Projection Chamber (TPC) 54

3.2.1 Design considerations 54

3.2.2 Detector layout 55

3.2.3 Front-end electronics and readout 63

3.3 Transition Radiation Detector (TRD) 66

3.3.1 Design considerations 66

3.3.2 Detector layout 68

3.3.3 TRD performance 70

3.3.4 Readout electronics 72
<table>
<thead>
<tr>
<th>3.4 Time-Of-Flight (TOF) detector</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1 Design considerations</td>
<td>74</td>
</tr>
<tr>
<td>3.4.2 Detector layout</td>
<td>75</td>
</tr>
<tr>
<td>3.4.3 Front-end electronics and readout</td>
<td>81</td>
</tr>
<tr>
<td>3.5 High-Momentum Particle Identification Detector (HMPID)</td>
<td>83</td>
</tr>
<tr>
<td>3.5.1 Design considerations</td>
<td>83</td>
</tr>
<tr>
<td>3.5.2 Detector layout</td>
<td>83</td>
</tr>
<tr>
<td>3.5.3 Front-end electronics and readout</td>
<td>87</td>
</tr>
<tr>
<td>3.6 PHOton Spectrometer (PHOS)</td>
<td>87</td>
</tr>
<tr>
<td>3.6.1 Design considerations</td>
<td>87</td>
</tr>
<tr>
<td>3.6.2 Detector layout</td>
<td>88</td>
</tr>
<tr>
<td>3.6.3 Front-end electronics and readout</td>
<td>91</td>
</tr>
<tr>
<td>3.7 ElectroMagnetic CALorimeter (EMCal)</td>
<td>92</td>
</tr>
<tr>
<td>3.7.1 Design considerations</td>
<td>92</td>
</tr>
<tr>
<td>3.7.2 Mechanical issues</td>
<td>93</td>
</tr>
<tr>
<td>3.7.3 Strip modules and super modules</td>
<td>96</td>
</tr>
<tr>
<td>3.7.4 Module physical parameters</td>
<td>97</td>
</tr>
<tr>
<td>3.7.5 Module optical system</td>
<td>98</td>
</tr>
<tr>
<td>3.7.6 Readout and trigger</td>
<td>100</td>
</tr>
<tr>
<td>3.7.7 EMCal calibration</td>
<td>101</td>
</tr>
<tr>
<td>3.8 ALICE COsmic Ray DEtector (ACORDE)</td>
<td>102</td>
</tr>
<tr>
<td>3.8.1 Design considerations</td>
<td>102</td>
</tr>
<tr>
<td>3.8.2 Detector layout</td>
<td>102</td>
</tr>
<tr>
<td>3.8.3 Readout electronics.</td>
<td>103</td>
</tr>
</tbody>
</table>

4 Muon spectrometer
4.1 Design considerations
4.2 Detector layout
4.3 Absorbers
4.4 Tracking system
4.5 Trigger system

5 Forward detectors
5.1 Zero Degree Calorimeter (ZDC)
5.1.1 Introduction
5.1.2 Detector layout
5.1.3 Signal transmission and readout
5.1.4 Monitoring and calibration
5.2 Photon Multiplicity Detector (PMD)
5.2.1 Design considerations
5.2.2 Detector layout
5.2.3 Front-End Electronics and readout
5.3 Forward Multiplicity Detector (FMD)
5.3.1 Design considerations 125
5.3.2 Detector layout 126
5.3.3 Front-end electronics and readout 129
5.3.4 Detector response 131
5.4 V0 detector 132
5.4.1 Design considerations 132
5.4.2 Detector layout 133
5.4.3 Front-end electronics 134
5.5 T0 detector 136
5.5.1 Design considerations 136
5.5.2 Detector layout 136
5.5.3 Fast electronics and readout 136

6 Trigger, online and offline computing 139
6.1 Trigger system 139
6.1.1 Design considerations 139
6.1.2 Trigger logic 140
6.1.3 Trigger inputs and classes 144
6.1.4 Trigger data 144
6.1.5 Event rates and rare events 145
6.2 Data AcQuisition (DAQ) System 146
6.2.1 Design considerations 146
6.2.2 System architecture 147
6.2.3 System flexibility and scalability 150
6.2.4 Event rates and rare events 151
6.2.5 Data challenges 151
6.3 High-Level Trigger (HLT) 153
6.3.1 Introduction 153
6.3.2 Architecture 154
6.3.3 Cluster management 156
6.3.4 Software architecture 157
6.3.5 HLT interfaces to other online systems and offline 159
6.3.6 Online data processing 160
6.4 Offline computing 162
6.4.1 Introduction 162
6.4.2 Computing model 163
6.4.3 Distributed computing 167
6.4.4 AliRoot framework 170
6.4.5 The quasi-online environment 180

7 Control System 183
7.1 Detector Control System (DCS) 183
7.1.1 Introduction 183
7.1.2 Design strategy and system architecture 183
7.1.3 System implementation and operation 187
7.2 Experiment Control System (ECS) 192
 7.2.1 Requirements 192
 7.2.2 System architecture 193
 7.2.3 Interfaces to the online systems 195
7.3 Online Detector Calibration 197

8 Performance 199
 8.1 Track and vertex reconstruction 200
 8.1.1 Primary vertex determination 200
 8.1.2 Track reconstruction 201
 8.1.3 Secondary-vertex finding 205
 8.2 Particle identification 207
 8.2.1 Charged-hadron identification 207
 8.2.2 Electron identification 212
 8.3 Neutral-particle detection 212
 8.4 Muon detection 215

ALICE acronym list 219

Bibliography 226