PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING AND SISSA

RECEIVED: January 14, 2007 REVISED: June 3, 2008 ACCEPTED: June 23, 2008 PUBLISHED: August 14, 2008

THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND EXPERIMENTS

LHC Machine

Lyndon Evans¹ and Philip Bryant (editors)²

European Organization for Nuclear Research CERN CH-1211, Genève 23, Switzerland E-mail: lyn.evans@cern.ch

ABSTRACT: The Large Hadron Collider (LHC) at CERN near Geneva is the world's newest and most powerful tool for Particle Physics research. It is designed to collide proton beams with a centre-of-mass energy of 14 TeV and an unprecedented luminosity of 10^{34} cm⁻²s⁻¹. It can also collide heavy (Pb) ions with an energy of 2.8 TeV per nucleon and a peak luminosity of 10^{27} cm⁻²s⁻¹. In this paper, the machine design is described.

KEYWORDS: Acceleration cavities and magnets superconducting; Beam-line instrumentation; Hardware and accelerator control systems; Instrumentation for particle accelerators and storage rings — high energy.

¹Corresponding author.

²This report is an abridged version of the LHC Design Report (CERN-2004-003).

Contents

1	Intro	oduction		1
2	Main machine layout and performance			
	2.1	2.1 Performance goals		3
	2.2	Performance limitations		4
		2.2.1	Beam-beam limit	4
		2.2.2	Mechanical aperture	4
		2.2.3	Maximum dipole field and magnet quench limits	5
		2.2.4	Energy stored in the circulating beams and in the magnetic fields	5
		2.2.5	Heat load	5
		2.2.6	Field quality and dynamic aperture	5
		2.2.7	Collective beam instabilities	6
		2.2.8	Luminosity lifetime	6
		2.2.9	Average turnaround time	7
		2.2.10	Integrated luminosity	7
	2.3 Lattice layout		layout	7
	2.4	Correc	tor circuits	11
		2.4.1	Arc orbit corrector magnets MCB	11
		2.4.2	Chromaticity or lattice sextupoles, MS	11
		2.4.3	Lattice skew sextupoles, MSS	11
		2.4.4	Tune-shift or tuning quadrupoles, MQT	11
		2.4.5	Arc skew quadrupole corrector magnets, MQS	12
		2.4.6	Landau damping or lattice octupoles, MO	12
		2.4.7	Spool-piece corrector magnets	12
	2.5	High luminosity insertions (IR1 and IR5)		12
	2.6	Medium luminosity insertion in IR2		13
	2.7	Beam cleaning insertions in IR3 and IR7		15
	2.8	RF insertion in IR4		16
	2.9	Beam abort insertion in IR6		16
	2.10	10 Medium luminosity insertion in IR8		16
3	Mag	Magnets		19
	3.1	Overview		19
	3.2	Superconducting cable		19
	3.3	Main dipole cold mass		22
	3.4	Dipole cryostat		27
	3.5	Short straight sections of the arcs		27
	3.6	Orbit and multipole correctors in the arcs		29
	3.7	Insertio	on magnets	30
	3.8	Disper	sion suppressors	31

	3.9	Match	ing section quadrupoles	32	
	3.10	Match	ing section separation dipoles	35	
	3.11	Low-b	beta triplets	40	
	3.12	Comp	ensator dipoles in ALICE and LHCb experiments	44	
4	The	The RF systems and beam feedback			
	4.1	Introd	uction	46	
	4.2	Main	400 MHz RF Accelerating System (ACS)	48	
	4.3	Staged	51		
	4.4	Transv	52		
	4.5	5 Low-level RF			
5	Vacuum system			55	
	5.1	Overv	iew	55	
	5.2	Beam	vacuum requirements	55	
	5.3	Beam	vacuum in the arcs and dispersion suppressors	56	
		5.3.1	Beam screen (figure 5.1)	57	
		5.3.2	Cold interconnects (figures 5.2 and 5.3)	57	
		5.3.3	Beam position monitor bodies and supports (figure 5.4)	59	
	5.4	Beam	vacuum in the insertions	59	
		5.4.1	Beam screen	59	
		5.4.2	Cold interconnections and Cold-Warm Transitions	60	
		5.4.3	Room temperature beam vacuum in the field free regions	61	
		5.4.4	Beam vacuum in room temperature magnets	61	
		5.4.5	Bake-out and NEG activation	61	
	5.5	Insulation vacuum		62	
	5.6	Vacuum controls			
6	Powering and protection			64	
	6.1	Overv	iew	64	
	6.2	Powering circuits			
	6.3	Powering equipment		69	
		6.3.1	Current leads	69	
		6.3.2	Electrical feedboxes	69	
		6.3.3	Superconducting links	70	
		6.3.4	Bus-bar systems	71	
	<i>с</i> 1	6.3.5 D	Normal conducting cables	/1	
	6.4	Protec	71		
		6.4.1	Quench heater power supplies	72	
		6.4.2	Energy extraction systems	72	
		6.4.3	13 KA circuits	73	
		0.4.4	out A extraction equipment	75	
		0.4.3	Cold diodes	/5	

	6.4.6 Controllers	76
	6.4.7 Supervision of the Quench Protection System (QPS)	76
6.5	Operational aspects and reliability	76
	6.5.1 Electrical quality assurance	76
	6.5.2 Quench detectors	77
	6.5.3 Quench Heater Power Supplies (DQHDS)	77
	6.5.4 Energy extraction	78
7 Cry	rogenic system	80
7.1	Overview	80
7.2	General architecture	81
7.3	Temperature levels	83
7.4	Cooling scheme	84
	7.4.1 Arc and dispersion suppressor cooling loops	84
	7.4.2 Matching section cooling loops	86
	7.4.3 Inner triplet cooling loops	86
7.5	Cryogenic distribution	86
7.6	Refrigeration plants	88
	7.6.1 4.5 k refrigerators	88
	7.6.2 1.8 k refrigerators	88
7.7	Cryogen storage and management	88
8 Bea	Beam instrumentation	
8.1	Beam position measurement	90
8.2	Beam current transformers	92
8.3	Beam loss system	93
8.4	Transverse profile measurement	94
8.5	Longitudinal profile measurement	94
8.6	Luminosity monitors	95
8.7	Tune, chromaticity, and betatron coupling	96
	8.7.1 General tune measurement system	96
	8.7.2 AC dipole	96
	8.7.3 High sensitivity tune measurement system	96
	8.7.4 Chromaticity measurement	97
	8.7.5 Betatron coupling measurement	97
8.8	Long-range beam-beam compensation	97
9 Cor	Control system	
9.1	Introduction	98
9.2	Architecture	98
	9.2.1 Overall architecture	98
	9.2.2 Network	100
03	Equipment access	101

		9.3.1	The VME and PC Front End Computers	101
		9.3.2	The PLCs	102
		9.3.3	The supported fieldbuses	102
		9.3.4	The WorldFIP fieldbus	102
		9.3.5	The Profibus fieldbus	103
	9.4	Servers	s and operator consoles	103
	9.5	Machir	ne timing and UTC	103
		9.5.1	Central beam and cycle management	103
		9.5.2	Timing generation, transmission and reception	104
		9.5.3	UTC for LHC time stamping	104
		9.5.4	UTC generation, transmission and reception	105
		9.5.5	NTP time protocol	105
	9.6	Data management		105
		9.6.1	Offline and online data repositories	106
		9.6.2	Electrical circuits	107
		9.6.3	Control system configuration	107
	9.7	Comm	unication and software frameworks	108
		9.7.1	FEC software framework	108
		9.7.2	Controls Middleware	108
		9.7.3	Device access model	109
		9.7.4	Messaging model	110
		9.7.5	The J2EE framework for machine control	110
		9.7.6	The UNICOS framework for industrial controls	111
		9.7.7	The UNICOS object model	112
	9.8	Control room software		113
		9.8.1	Software for LHC beam operation	113
		9.8.2	Software requirements	113
		9.8.3	The software development process	114
		9.8.4	Software for LHC Industrial Systems	115
	9.9	Service	es for operations	115
		9.9.1	Analogue signals transmission	115
		9.9.2	Alarms	116
		9.9.3	Logging	117
		9.9.4	Post mortem	118
10	Bear	n dump	120	
	10.1	System	120	
	10.2	Reliabi	lity	122
		10.2.1	MKD	122
		10.2.2	МКВ	123
		10.2.3	MSD	123
		10.2.4	Vacuum system and TDE	123
		10.2.5	Post-mortem	123

		10.2.6	Synchronisation	123
		10.2.7	Energy tracking	123
		10.2.8	Other protection	124
	10.3	Main e	quipment subsystems	124
		10.3.1	Fast-pulsed extraction magnets MKD	124
		10.3.2	Generator	125
		10.3.3	Fast-pulsed dilution magnets MKB	126
		10.3.4	Extraction septum magnets MSD	127
		10.3.5	Beam dump absorber block TDE	127
		10.3.6	Activation	129
11	Bean	n inject	ion	130
	11.1	Overvi	ew	130
	11.2	Injectio	on septa	131
	11.3	Injectio	on kickers	132
	11.4	Contro	l system	136
	11.5	Beam i	instrumentation	136
12	Injec	ction ch	138	
	12.1	Introdu	iction	138
	12.2	LHC at	nd SPS requirements	139
	12.3	Schem	e to produce the LHC proton beam in the PS complex	140
		12.3.1	Space charge issues in PSB and PS	140
		12.3.2	LHC bunch train generation in the PS	142
		12.3.3	Initial debunching-rebunching scheme	142
		12.3.4	Multiple splitting scheme	143
	12.4	Overvi	ew of hardware changes	143
13	LHC	as an i	on collider	146
	13.1	LHC p	arameters for lead ions	146
		13.1.1	Nominal ion scheme	147
		13.1.2	Early ion scheme	147
	13.2	Orbits	and optical configurations for heavy ions	148
	13.3	Longit	udinal dynamics	149
	13.4	Effects	of nuclear interactions on the LHC and its beams	149
	13.5	Intra-b	eam scattering	150
	13.6	Synchr	otron radiation from lead ions	150
LH	IC ma	achine a	acronyms	153
Bił	oliogr	aphy		154