

RECEIVED: April 11, 2008 ACCEPTED: July 10, 2008 PUBLISHED: August 14, 2008

THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND EXPERIMENTS

The LHCf detector at the CERN Large Hadron Collider

The LHCf Collaboration

ABSTRACT: LHCf is an experiment dedicated to the measurement of neutral particles emitted in the very forward region of LHC collisions. The physics goal is to provide data for calibrating the hadron interaction models that are used in the study of Extremely High-Energy Cosmic-Rays. This is possible since the laboratory equivalent collision energy of LHC is 10^{17} eV. Two LHCf detectors, consisting of imaging calorimeters made of tungsten plates, plastic scintillator and position sensitive sensors, are installed at zero degree collision angle ± 140 m from an interaction point (IP). Although the lateral dimensions of these calorimeters are very compact, ranging from $20 \text{ mm} \times 20 \text{ mm}$ to $40 \text{ mm} \times 40 \text{ mm}$, the energy resolution is expected to be better than 6% and the position resolution better than 0.2 mm for γ -rays with energy from 100 GeV to 7 TeV. This has been confirmed by test beam results at the CERN SPS. These calorimeters can measure particles emitted in the pseudo rapidity range $\eta > 8.4$. Detectors, data acquisition and electronics are optimized to operate during the early phase of the LHC commissioning with luminosity below $10^{30} \text{ cm}^{-2} \text{s}^{-1}$. LHCf is expected to obtain data to compare with the major hadron interaction models within a week or so of operation at luminosity $\sim 10^{29} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$. After ~ 10 days of operation at luminosity $\sim 10^{29} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$, the light output of the plastic scintillators is expected to degrade by $\sim 10\%$ due to radiation damage. This degradation will be monitored and corrected for using calibration pulses from a laser.

KEYWORDS: Photon detectors for UV, visible and IR photons; Scintillators, scintillation and light emission processes; Solid state detectors; Calorimeters; Gamma detectors; Particle identification methods; Particle tracking detectors; Photon detectors for UV, visible and IR photons; Gamma detectors; Particle detectors; Radiation damage to detector materials; Data acquisition concepts; Detector control systems; Front-end electronics for detector readout; Trigger concepts and systems; Analysis and statistical methods; Pattern recognition, cluster finding, calibration and fitting methods; Simulation methods and programs; Scintillators and scintillating fibers and light guides; Detector alignment and calibration methods; Overall mechanics design.

Contents

The LHCf Collaboration			ii
1	Introduction		1
	1.1	Physics of the LHCf experiment	1
	1.2	Experimental overview	3
2	The detectors		6
	2.1	Detector overview	6
	2.2	Calorimeter	6
	2.3	SciFi and MAPMT	10
	2.4	Silicon strip detector	11
	2.5	Manipulator	14
	2.6	Front counters	14
3	Trigger and DAQ electronics		16
	3.1	Global flow of trigger and DAQ	16
	3.2	Electronics and DAQ for the SciFi detector	17
	3.3	Electronics and DAQ for the silicon tracking detector.	18
4	Performance of the LHCf detectors		19
	4.1	Expected performance of the LHCf detectors	19
	4.2	Results of SPS beam tests	24
		4.2.1 Results for the calorimeters	24
		4.2.2 Position resolution of the SciFi	27
		4.2.3 Position resolution of the silicon tracker	28
		4.2.4 Demonstration of π^0 mass reconstruction capability	29
	4.3	Results of radiation damage tests	31
5	Sun	nmary	33
Bibliography			35