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Chapter 3

The interface to the LHC machine

3.1 Beampipe

The beampipe design is particularly delicate since the LHCb experiment is focussed on the high
rapidity region, where the particle density is high. The number of secondary particles depends
on the amount of material seen by incident primary particles. The mass of the beampipe and the
presence of flanges and bellows have a direct influence on the occupancy, in particular for the
tracking chambers and the RICH detectors. Optimisation of the design and selection of materials
were therefore performed in order to maximize transparency in these critical regions [12, 13].

3.1.1 Layout

The beampipe, schematically represented in figure 3.1, includes the forward window of the VELO
covering the full LHCb acceptance and four main conical sections, the three closer to the interaction
point being made of beryllium and the one further away of stainless steel.

Beryllium was chosen as the material for 12 m out of the 19 m long beampipe, for its high
transparency to the particles resulting from the collisions. It is the best available material for this
application given its high radiation length combined with a modulus of elasticity higher than that
of stainless steel. However, its toxicity [14], fragility and cost are drawbacks which had to be taken
into account in the design, installation and operation phases. Flanges, bellows and the VELO exit
window are made of high strength aluminium alloys which provide a suitable compromise between
performance and feasibility. The remaining length, situated outside the critical zone in terms of
transparency, is made of stainless steel, a material widely used in vacuum chambers because of
its good mechanical and vacuum properties. The VELO window, a spherically shaped thin shell
made of aluminium 6061-T6, is 800 mm in diameter and was machined from a specially forged
block down to the final thickness of 2 mm. The machining of the block included a four convolution
bellows at its smallest radius. The first beampipe section (UX85/1), that traverses RICH1 and TT
(see figure 3.2), is made of 1 mm thick Be, includes a 25 mrad half-angle cone and the transition to
the 10 mrad half-angle cone of the three following beampipe sections. In order to avoid having a
flange between the VELO window and UX85/1, the two pieces were electron beam welded before
installation. Sections UX85/2 (inside the dipole magnet) and UX85/3 (that traverses the Tracker,
RICH2, M1 and part of ECAL) are 10 mrad beryllium cones of wall thickness varying from 1
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Figure 3.1: The 19 m long vacuum chamber inside the LHCb experiment is divided into four
main sections. The first three are made of machined beryllium cones assembled by welding and
the fourth of stainless steel. Bellows expansion joints provide interconnect flexibility in order to
compensate for thermal expansions and mechanical tolerances.

to 2.4 mm as the diameter increases from 65 up to 262 mm. UX85/3 is connected to a stainless
steel bellows through a Conflat seal on the larger diameter. The transition between aluminium and
stainless steel is formed using an explosion bonded connection. The three Be beampipes were
machined from billets up to 450 mm long and assembled by arc welding with a non-consumable
electrode under inert gas protection (TIG) to achieve the required length. TIG welding was also
used to connect the aluminium flanges at the extremities of the tubes.

The UX85/4 section completes the 10 mrad cone and includes a 15◦ half-angle conical ex-
tremity that provides a smooth transition down to the 60 mm final aperture. It was manufactured
from rolled and welded stainless steel sheet of 4 mm thickness. A copper coating of 100 µm was
deposited before assembly on the downstream side end cone to minimise the impedance seen by
the beam. The aluminium and stainless steel bellows compensate for thermal expansion during
bakeout and provide the necessary flexibility to allow beampipe alignment. Optimised Ultra High
Vacuum (UHV) flanges were developed in order to minimise the background contribution from the
various connections in the high transparency region [15]. The resulting flange design is based on
all-metal Helicoflex seals and high strength AA 2219 aluminium alloy flanges to ensure reliable
leak tightness and baking temperatures up to 250◦C. A relatively low sealing force allows the use
of aluminium and a significant reduction of the overall mass compared to a standard Conflat flange.

Another important source of background is the beampipe support system [16]. Each
beampipe section must be supported at two points, with one fixed, i.e. with displacements re-
strained in all directions, and the other movable, the latter allowing free displacements along the
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Figure 3.2: View of the VELO exit window and UX85/1 beampipe as installed inside the RICH1
gas enclosure.

Figure 3.3: Optimised beampipe support inside the acceptance region. A system of eight high
resistance cables and rods provide the required rigidity in all directions. A polyimide-graphite
ring split in several parts, which are bolted together between the collar and the beampipe, prevents
scratches on the beryllium and reduces local stresses at the contact surfaces.

beampipe axis. The fixed supports, which must compensate the unbalanced vacuum forces due to
the conical shape of the beampipe, are each constructed using a combination of eight stainless steel
cables or rods mounted under tension, pulling in both upstream and downstream directions with an
angle to the beam axis (figure 3.3). Where a movable support is required to allow thermal expan-
sion, four stainless steel cables are mounted in the plane perpendicular to the beampipe, blocking all
movements except along the beam axis. The support cables and rods are connected to the beampipe
through aluminium alloy collars with minimised mass, and an intermediate polyimide-graphite ring
to avoid scratching the beryllium and to reduce stresses on contacting surfaces.

The experiment beam vacuum is isolated from the LHC with two sector valves, installed at
the cavern entrances, which allow interventions and commissioning independently of the machine
vacuum system.
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3.1.2 Vacuum chamber

In order to achieve an average total dynamic pressure of 10−8 to 10−9 mbar with beam passing
through, the LHCb beampipe and the VELO RF-boxes are coated with sputtered non-evaporable
getter (NEG) [17]. This works as a distributed pump, providing simultaneously low outgassing and
desorption from particle interactions with the walls. Another purpose of the NEG coating is to pre-
vent electron multipacting [18] inside the chamber, since the secondary electron emission yield is
much lower than for the chamber material. The UHV pumping system is completed by sputter-ion
pumps in the VELO vessel and at the opposite end of the beampipe in order to pump non-getterable
gases. Once the NEG coating has been saturated, the chamber must be heated periodically (baked
out) to 200◦C, for 24 hours, in order to recover the NEG pumping capacity. The temperature will
have to be gradually increased with the number of activation cycles, however it is limited to 250◦C
in the optimised flange assemblies for mechanical reasons. Before NEG activation, the vacuum
commissioning procedure also includes the bakeout of the non-coated surfaces inside the VELO
vacuum vessel to a temperature of 150◦C. Removable heating jackets are installed during shut-
downs covering the VELO window and the beampipe up to the end of RICH2. From there to the
end of the muon chambers, a permanent system is installed. As there are no transparency con-
straints, the insulation of the beampipe inside the muon filters is made from a mixture of silica,
metal oxides and glass fiber, whilst the heating is provided by standard resistive tapes.

Such an optimised vacuum chamber must not be submitted to any additional external pres-
sure or shocks while under vacuum, due to the risk of implosion. Hence, it must be vented to
atmospheric pressure before certain interventions in the surrounding detectors. Saturation of the
NEG coating and consequent reactivation after the venting will be avoided by injecting an inert gas
not pumped by the NEG. Neon was found to be the most suitable gas for this purpose because of
its low mass and the fact that it is not used as a tracer for leak detection, such as helium or argon.
However, commercially available Ne must first be purified before injection. A gas injection system
installed in the cavern will provide the clean neon to be injected simultaneously into both VELO
beam vacuum and detector vacuum volumes, as the pressure difference between the two volumes
must be kept lower than 5 mbar to prevent damage to the VELO RF-boxes (c.f. section 5.1).

3.2 The Beam Conditions Monitor

In order to cope with possible adverse LHC beam conditions, particularly with hadronic showers
caused by misaligned beams or components performance failures upon particle injection into the
LHC, the LHCb experiment is equipped with a Beam Conditions Monitor (BCM) [19]. This system
continuously monitors the particle flux at two locations in the close vicinity of the vacuum chamber
in order to protect the sensitive LHCb tracking devices. In the case of problems, the BCM system
will be the first to respond and will request a dump of the LHC beams. The BCM connects to
both the LHCb experiment control system and to the beam interlock controller of the LHC [20].
As a safety system, the BCM is equipped with an uninterruptable power supply and continuously
reports its operability also to the vertex locator control system through a hardwired link.

The BCM detectors consist of chemical-vapor deposition (CVD) diamond sensors, which
have been proven to withstand radiation doses as high as those that may occur in LHC accident
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Figure 3.4: Schematic view of the eight CVD-diamond sensors surrounding the beampipe at the
downstream BCM station.

scenarios. In order to assure compatibility of the signals with those from other LHC experiments,
the dimensions of the sensors are the same as those of the ATLAS and CMS experiments, i.e. their
thickness is 500 µm, the lateral dimensions are 10 mm ×10 mm, with a centered 8 mm ×8 mm
metallized area. The metallization is made of a 500 Å thick gold layer on a 500 Å thick layer of
titanium. The radiation resistance of the metallization has been studied with the exposure of a
4 mm2 surface to 4×1015 protons of an energy of 25 MeV over 18 hours. No sign of degradation
was observed.

The two BCM stations are placed at 2131 mm upstream and 2765 mm downstream from the
interaction point. Each station consists of eight diamond sensors, symmetrically distributed around
the vacuum chamber with the sensitive area starting at a radial distance of 50.5 mm (upstream) and
37.0 mm (downstream). Figure 3.4 shows the downstream BCM station around the beampipe. The
sensors are read out by a current-to-frequency converter card [21] with an integration time of 40 µs,
developed for the Beam Loss Monitors of the LHC.

Simulations were carried out with the GAUSS package [22] to study the expected perfor-
mance of the BCM. Unstable beam situations are described in a simplified way in generating
7 GeV protons at 3000 mm upstream of the interaction point in a direction parallel to the beam
and in calculating the energy deposited in the BCM sensors caused by these protons. All sensors
experience an increase of their signals due to hadronic showers produced by the protons in inter-
mediate material layers. Assuming that during unstable LHC beam condition, the beam comes as
close as 475 µm (approximately 6 times its RMS) to the RF foil of the VELO (see section 5.1), it
would take 40–80 µs of integration time (or about 20 LHC turns) for the BCM to detect the critical
situation and request a beam dump.
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