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Chapter 2

Magnet system and magnetic field

This chapter begins with a brief description of the ATLAS magnet system (section 2.1), which
consists of one solenoid and three toroids (one barrel and two end-caps). Section 2.2 proceeds with
a description of the current understanding of the magnetic field across the whole apparatus. This
includes mapping of the solenoid field and first measurements of the barrel toroid field with the
Hall-probe system, as well as calculations to determine the detailed field map with the required
accuracy and performance specifications to be used in ATLAS simulation and reconstruction ap-
plications.

2.1 Magnet system

ATLAS features a unique hybrid system of four large superconducting magnets. This magnetic
system is 22 m in diameter and 26 m in length, with a stored energy of 1.6 GJ. After approximately
15 years of design, construction in industry, and system integration at CERN, the system is installed
and operational in the underground cavern. This section presents the properties of the magnets and
their related services. More details can be found in [2] for the solenoid.

Figure 1.1 shows the general layout, the four main layers of detectors and the four super-
conducting magnets which provide the magnetic field over a volume of approximately 12,000 m3

(defined as the region in which the field exceeds 50 mT). The spatial arrangement of the coil wind-
ings is shown in figure 2.1. The ATLAS magnet system, whose main parameters are listed in
table 2.1, consists of:

• a solenoid (section 2.1.1), which is aligned on the beam axis and provides a 2 T axial mag-
netic field for the inner detector, while minimising the radiative thickness in front of the
barrel electromagnetic calorimeter;

• a barrel toroid (section 2.1.2) and two end-cap toroids (section 2.1.3), which produce a
toroidal magnetic field of approximately 0.5 T and 1 T for the muon detectors in the central
and end-cap regions, respectively.

The first conceptual design of the magnet system was sketched in the early 1990’s, and the
technical design reports [3–6] were published in 1997. Regular project overviews and status reports
of design and production were made available [7, 8] throughout the design and manufacturing
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Figure 2.1: Geometry of magnet windings and
tile calorimeter steel. The eight barrel toroid
coils, with the end-cap coils interleaved are
visible. The solenoid winding lies inside the
calorimeter volume. The tile calorimeter is
modelled (section 2.2.2) by four layers with dif-
ferent magnetic properties, plus an outside re-
turn yoke. For the sake of clarity the forward
shielding disk (section 3.2) is not displayed.

Figure 2.2: Bare central solenoid in the factory
after completion of the coil winding.

phases. The cold-mass and cryostat integration work began in 2001. The first barrel toroid coil
was lowered in the cavern in fall 2004, immediately followed by the solenoid (embedded inside the
LAr barrel calorimeter). The remaining seven barrel-toroid coils were installed in 2004 and 2005,
and the end-cap toroids in the summer of 2007.

2.1.1 Central solenoid

The central solenoid [2] is displayed in figure 2.2, and its main parameters are listed in table 2.1.
It is designed to provide a 2 T axial field (1.998 T at the magnet’s centre at the nominal 7.730 kA
operational current). To achieve the desired calorimeter performance, the layout was carefully
optimised to keep the material thickness in front of the calorimeter as low as possible, resulting
in the solenoid assembly contributing a total of ∼ 0.66 radiation lengths [9] at normal incidence.
This required, in particular, that the solenoid windings and LAr calorimeter share a common vac-
uum vessel, thereby eliminating two vacuum walls. An additional heat shield consisting of 2 mm
thick aluminium panels is installed between the solenoid and the inner wall of the cryostat. The
single-layer coil is wound with a high-strength Al-stabilised NbTi conductor, specially developed
to achieve a high field while optimising thickness, inside a 12 mm thick Al 5083 support cylin-
der. The inner and outer diameters of the solenoid are 2.46 m and 2.56 m and its axial length
is 5.8 m. The coil mass is 5.4 tonnes and the stored energy is 40 MJ. The stored-energy-to-mass
ratio of only 7.4 kJ/kg at nominal field [2] clearly demonstrates successful compliance with the
design requirement of an extremely light-weight structure. The flux is returned by the steel of the
ATLAS hadronic calorimeter and its girder structure (see figure 2.1). The solenoid is charged and
discharged in about 30 minutes. In the case of a quench, the stored energy is absorbed by the en-
thalpy of the cold mass which raises the cold mass temperature to a safe value of 120 K maximum.
Re-cooling to 4.5 K is achieved within one day.
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Table 2.1: Main parameters of the ATLAS magnet system.
Property Feature Unit Solenoid Barrel toroid End-cap toroids
Size Inner diameter m 2.46 9.4 1.65

Outer diameter m 2.56 20.1 10.7
Axial length m 5.8 25.3 5.0
Number of coils 1 8 2 × 8

Mass Conductor t 3.8 118 2 × 20.5
Cold mass t 5.4 370 2 × 140
Total assembly t 5.7 830 2 x 239

Coils Turns per coil 1154 120 116
Nominal current kA 7.73 20.5 20.5
Magnet stored energy GJ 0.04 1.08 2 x 0.25
Peak field in the windings T 2.6 3.9 4.1
Field range in the bore T 0.9–2.0 0.2–2.5 0.2–3.5

Conductor Overall size mm2 30 x 4.25 57 x 12 41 x 12
Ratio Al:Cu:NbTi 15.6:0.9:1 28:1.3:1 19:1.3:1
Number of strands (NbTi) 12 38–40 40
Strand diameter (NbTi) mm 1.22 1.3 1.3
Critical current (at 5 T and 4.2 K) kA 20.4 58 60
Operating/critical-current ratio at 4.5 K % 20 30 30
Residual resistivity ratio (RRR) for Al > 500 > 800 > 800
Temperature margin K 2.7 1.9 1.9
Number of units × length m 4 × 2290 8 × 4 × 1730 2 × 8 × 2 × 800
Total length (produced) km 10 56 2 x 13

Heat load At 4.5 K W 130 990 330
At 60–80 K kW 0.5 7.4 1.7
Liquid helium mass flow g/s 7 410 280

The electromagnetic forces are counteracted by the combination of the coil and warm-to-cold
mechanical support, which maintains the concentricity of the windings. All solenoid services pass
through an S-shaped chimney at the top of the cryostat, routing the service lines to the correspond-
ing control dewar (section 2.1.4.2).

The coil was manufactured and pre-tested in the factory [10], came to CERN for integration in
the LAr cryostat, underwent an on-surface acceptance test in its semi-final configuration [11], and
was installed in its final central position in ATLAS in October 2005. The one week cool-down and
a commissioning test up to nominal field were successfully completed in the summer of 2006 [12].
The solenoid is now ready for detector operation.

2.1.2 Barrel toroid

The main parameters of the magnet are listed in table 2.1. The cylindrical volume surrounding the
calorimeters and both end-cap toroids (see figure 1.1) is filled by the magnetic field of the barrel
toroid, which consists of eight coils encased in individual racetrack-shaped, stainless-steel vacuum
vessels (see figure 2.3). The coil assembly is supported by eight inner and eight outer rings of
struts. The overall size of the barrel toroid system as installed is 25.3 m in length, with inner and
outer diameters of 9.4 m and 20.1 m, respectively.
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Figure 2.3: Barrel toroid as installed in the underground cavern; note the symmetry of the support-
ing structure. The temporary scaffolding and green platforms were removed once the installation
was complete. The scale is indicated by the person standing in between the two bottom coils.
Also visible are the stainless-steel rails carrying the barrel calorimeter with its embedded solenoid,
which await translation towards their final position in the centre of the detector.

The conductor and coil-winding technology is essentially the same in the barrel and end-cap
toroids; it is based on winding a pure Al-stabilised Nb/Ti/Cu conductor [13] into pancake-shaped
coils, followed by vacuum impregnation.

The cold-mass integration [14] and the cryostat integration [15] were performed at CERN
over a period of approximately three years, and were completed in summer 2005. In parallel, all
coils successfully underwent on-surface acceptance test procedures [16]. Cool down and testing
of the barrel toroid in the cavern took place in 2006. The cool down of the 360-tonne cold mass
to 4.6 K takes five weeks. The test programme included normal ramps, up to nominal current (in
2 hours) followed by either a slow dump (in 2 hours) or a fast dump (in 2 minutes) in the case
of a provoked quench. The ultimate test sequence that proved the system’s health is shown in
figure 2.4. The magnet current is raised in steps up to its nominal value of 20.5 kA and then finally
up to 21.0 kA, demonstrating the ability of the system to withstand at least an additional 500 A.
The current is then allowed to decay back to its design value; the magnet is finally turned off by a
deliberate fast dump. After re-cooling the cycle was repeated, demonstrating that no degradation
had occurred up to the nominal operating current. During a fast dump, triggered either manually or
by the quench detection system, the stored energy of 1.1 GJ is absorbed by the enthalpy of the cold
mass following the activation of four quench heaters per coil and in all eight coils, which forces
the entire magnet into the normal conducting state within less than two seconds. This leads to a
very safe global cold mass temperature of about 58 K and a hot-spot temperature in the windings of
about 85 K maximum. The uniform quench heating system also ensures that the internal voltage in
the toroid is kept at a low value of about 70 V. After a fast dump the magnet cooling system needs
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Figure 2.4: Time history of the barrel toroid
current during an excitation test up to 102%
of the nominal value. The current drops back
to zero within two minutes of the deliberately-
provoked quench.

Figure 2.5: End-cap toroid cold mass inserted
into the cryostat. The eight flat, square coil
units and eight keystone wedges (with the cir-
cular holes) are visible.

about 50 hours to re-cool the toroid to 4.6 K whereafter normal operation can re-start. The details
of the coil testing are published elsewhere, in [17] for the first coil, in [18] for an overall summary,
and in [19] and [20] for quench behaviour and quench losses, respectively.

The net Lorentz forces of approximately 1400 tonnes per coil directed inwards and the self-
weight of the toroids are counteracted by the warm structure of Al-alloy struts mounted in between
the eight coils. However, the barrel toroid structure still deflects significantly under its own weight.
After release of the temporary support structure and systematic loading of the toroid with its own
weight of 830 tonnes and the additional 400 tonnes of weight of the muon chambers, the final shape
of the toroid bore was designed to be cylindrical. The toroid coils were installed in calculated posi-
tions on an oval, longer by 30 mm in the vertical direction, to allow for structure deflection during
load transfer from the temporary support structure. Since the release and removal of the installa-
tion supports, the upper edge of the toroid moved down by about 26 mm, which demonstrates that
the design values had been well established and that the installation was precise to within a few
millimetres.

The installation of the barrel toroid in the ATLAS cavern commenced in October 2004. It
took about 11 months to install the complete toroid, as depicted in figure 2.3. This is discussed
in more detail in section 9.6 within the context of the overall ATLAS installation, for which this
toroid installation phase was one of the most demanding ones. The overall structure design and
installation experience are reported in [21].
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2.1.3 End-cap toroids

The main parameters of the two end-cap toroids are listed in table 2.1. These toroids generate
the magnetic field required for optimising the bending power in the end-cap regions of the muon
spectrometer system. They are supported off and can slide along the central rails, which facilitates
the opening of the detector for access and maintenance (see section 9.5.1). Each end-cap toroid
consists of a single cold mass built up from eight flat, square coil units and eight keystone wedges,
bolted and glued together into a rigid structure to withstand the Lorentz forces (see figure 2.5).
Design details are given elsewhere [22], and the production in industry of the coil modules and
vacuum vessels is described in [23].

The cold masses were assembled and inserted into their cryostats at CERN. Figure 2.5 shows
the first end-cap toroid interior just prior to the closing of the vacuum vessel. A crucial step in the
integration process is the adjustment of the cold mass supports [24]. The weights of cold mass and
vacuum vessel are 140 and 80 tonnes respectively. With the exception of windings, coil supports,
and bore tube, the entire structure is made of Al alloy. With a weight of 240 tonnes, the end-cap
toroids were some of the heaviest objects to be lowered into the cavern.

The end-cap-toroid cold masses will each be subject to a Lorentz force of 240 tonnes, pushing
them against the stops mounted on the eight barrel toroid coils. Achieving the correct sharing of the
forces in the axial tie-rods has therefore been a critical design goal. Prior to their installation in the
cavern in summer 2007, both end-cap toroids passed tests at 80 K to check the magnet mechanics
and electrical insulation after thermal shrinkage. Once the end-cap toroids are powered in series
with the barrel toroid, the peak stress in the barrel-toroid windings, in the areas where the magnetic
fields overlap, will increase by about 30%. After a four-week cooldown, both end-cap toroids were
successfully tested at half current, albeit one at a time and in stand-alone mode. The final tests at
full field will take place in the spring of 2008, after the installation of the shielding disks and with
the end-cap calorimeters at their nominal position.

2.1.4 Magnet services

2.1.4.1 Vacuum system

The insulating vacuum is achieved with diffusion pumps directly attached to the barrel and the
end-cap toroids, two per coil for all toroids, each with a capacity of 3000 m3/h. In addition, two
roughing and three backing pumps are used in the low stray-field area at the cavern wall. Under
normal conditions, with a leak rate less than 10−4 mbar · l/s, a single pump would be sufficient.
However, for redundancy and in order to minimise detector down-time, extra pumping units were
installed. Since the solenoid is installed inside the cryostat of the LAr barrel calorimeter, the
insulation vacuum is controlled by the LAr cryogenic system (section 9.4.5) rather than by the
magnet control system (see section 2.1.4.4).

2.1.4.2 Cryogenics

The overall cryogenic systems in ATLAS are described in section 9.4. Here, details are provided
on the system specific to the magnets.
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Figure 2.6: Layout of the magnet cryogenics system in the surface hall (compressors) and service
cavern (shield refrigerator and helium liquefier). They deliver cold gas and liquid to the distribution
valve box in the experimental cavern, from which the solenoid and the toroid proximity cryogenics
are fed (see figure 2.7).

The overall magnet cryogenic system is divided into external, proximity, and internal cryo-
genics, which are connected via transfer lines. The lines serving the solenoid and barrel toroid
remain fixed, whereas those of the end-cap toroids are partially flexible, as these toroids have to be
moved to access the calorimeters and inner detector for maintenance and repairs (section 9.7).

The layout of the various cryogenic systems is shown in figure 2.6. The external cryogenics
consist of two refrigerators (the main refrigerator and the shield refrigerator), a distribution transfer
line, and a distribution valve box. The main refrigerator cold box has a refrigeration capacity of
6 kW at 4.5 K equivalent, while the shield refrigerator cold box has a refrigeration capacity of
20 kW at 40–80 K.

The gas buffers are located on the surface with the refrigerator compressors, while the refrig-
erator cold boxes are installed in the USA15 side cavern. The common distribution transfer line
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Figure 2.7: Left: Layout of underground service connections to the solenoid and toroid systems.
The two large helium dewars can be seen on the side of the main cavern. Also shown are the fixed
cryogenic lines supplying the solenoid and the cryo-ring for the barrel toroid coils at the top. The
cryogenics lines in the flexible chains supply the two end-cap toroids and follow them whenever
they move for detector access and maintenance. Right: schematic of the liquid-helium supply in
the barrel toroid. The cryo-ring contains six standard sectors; a bottom sector with a valve box
where the input flow per coil is measured and controlled; and the top sector where all lines come
together and which is connected to the current lead cryostat.

makes the link to the distribution valve box in the main cavern. All proximity cryogenics equip-
ment, including the storage dewar, cold pumps, cryostat phase separator, and distribution valve
box (except for the valve unit of the solenoid) are positioned near the wall of the main cavern, as
schematically shown in figure 2.7 (left).

The distribution valve box channels the fluids to two independent proximity cryogenic sys-
tems, one for the toroids (barrel cryo-ring and two end-caps) and one for the solenoid. For the
toroids, there is a storage dewar with a capacity of 11,000 litres of liquid helium. There also exist a
distribution valve box, a phase separator dewar with two centrifugal pumps and a storage capacity
of 600 litres of liquid helium. The solenoid has a control dewar with a storage capacity of 250 litres
of liquid helium, positioned at the top of the detector.

The proximity cryogenic equipment supplies coolant to the magnet internal cryogenics, which
consist mainly of cooling pipes attached to the cold mass and the thermal shield. The aluminium
cooling tubes are either welded to the outer surface of the Al-alloy support cylinder (solenoid) or
embedded and glued inside and on top of the Al-alloy coil casings enclosing the pancake coils
(toroids).

The toroids are cooled with a forced flow of boiling helium, which enters the magnets from
the top. In the case of the barrel toroid (see figure 2.7), helium is supplied from the current lead
cryostat positioned on the top sector, runs down to the distribution valve box at floor level with

– 26 –



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
3

eight control valves regulating the flow in the eight coils, then goes up and enters the eight coils
separately, while the return line returns to the top. A total of 1200 g/s of slightly sub-cooled liquid
helium is circulated by means of centrifugal pumps, which take the liquid from the phase separator
dewar. The system is equipped with two pumps for redundancy. The second pump is called into
operation if the first one fails. The liquid helium in the storage dewar will be used in the event of a
failure with the main refrigerator to provide the required cooling capacity to safely ramp down the
toroids over a two-hour period.

The solenoid, with a cold mass of approximately five tonnes, is cooled by a direct Joule-
Thompson flow from the main refrigerator and is slightly sub-cooled via a heat exchanger in the
250 litre helium control dewar.

The flow in the solenoid and the ten toroid cold masses is controlled individually to cope with
variations in flow resistance and to guarantee helium quality in all coils. Given that the end-cap
toroids and solenoid each have a single cold mass, there is a single flow control and the branches
of cooling pipes (two for the solenoid and sixteen for each end-cap toroid) are arranged in parallel.

2.1.4.3 Electrical circuits

The three toroids are connected in series to the 20.5 kA/16 V power supply shown schematically
in figure 2.8 (left). They are however individually voltage-protected by the two diode/resistor ramp-
down units. The electrical circuit of the central solenoid is similar and shown in figure 2.8 (right).
It has a 8 kA/8 V power supply. The power supply, switches, and diode/resistor units are located
in the side cavern and approximately 200 m of aluminium bus-bars provide the connections to
the magnets in the cavern. Ramping up is accomplished at a rate of 3 A/s, leading to a max-
imum ramp-up time of two hours. In the case of a slow dump, the magnets are de-energised
across the diode/resistor units in about 2.5 hours. Quench detection is by classical bridge connec-
tions across the entire barrel toroid, across the end-cap toroids and across the solenoid, as well as
across individual coils, using differential voltage measurements with inductive voltage compensa-
tion.

There is a six-fold redundancy in the toroid quench detection grouped in two physically-
separated units and cable routings. Quench protection is arranged by firing heaters in all toroid
coils so that a uniform distribution of the cold-mass heating is achieved. Given the normal-zone
propagation of 10–15 m/s, a toroid coil is switched back to the normal state within 1–2 seconds.
As for the quench detection, the quench-protection heater circuits including power supply, cabling,
and heaters embody a two-fold redundancy. A similar system is used for the solenoid. An overview
of the magnet services can be found in [25].

2.1.4.4 Magnet controls

A magnet control system steers and executes automatically the various running modes of the mag-
net system. Its implementation is realised as part of the overall ATLAS detector control system,
as described in section 8.5. The hardware designs rely on a three-layer model, using distributed
input/output connected via field-networks or directly by wiring to a process-control layer, the last
layer being the supervisor.
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Figure 2.8: Electrical circuit showing the barrel (BT) and end-cap (ECT) toroids connected
in series, fed by a 20.5 kA power converter and protected by a voltage-limiting diode/resistor
ramp-down unit (left). Electrical circuit of the central solenoid (CS), fed by a 8 kA power con-
verter (right).

The main control functions are:

• performing automatic operational sequences on a given magnet (sub-system tests);

• providing a communication interface with the power converter;

• regulating the helium flow in the magnet current leads as a function of the magnet current;

• enabling information exchange between the control system and other sub-systems such as
vacuum or cryogenics;

• monitoring of all critical parameters in the coil (temperatures, strain and displacement
gauges);

• performing calculations of non-linear sensor corrections (temperature sensors, vacuum
gauges).

The supervision system displays a synopsis of the main process parameters, communicates
with the power supply, collects both continuous and transient data, allows visualisation of any
collected data on trend charts and archives collected data. For long-term storage and for correlation
of data between different systems, a central data-logging system will regularly receive a pre-defined
number of data items from each magnet system. A subset of the main control parameters is sent to
the ATLAS detector safety system and also to the LHC machine (see section 9.10).
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2.2 Magnetic field determination

The specifications on the determination of the magnetic field (section 2.2.1) are rather different
in the inner detector (ID) and the muon spectrometer. In the ID cavity, the driving consider-
ation is the absolute accuracy of the momentum scale. In the muon spectrometer, the field is
highly non-uniform: residual bending-power uncertainties, if large enough, would translate pri-
marily into degraded muon momentum resolution. Detailed magnetic modelling (section 2.2.2)
and novel instrumentation (section 2.2.3) have allowed a high-precision mapping of the solenoid
field (section 2.2.4) as well as a preliminary experimental validation of the field measurement and
reconstruction strategy in the muon spectrometer (section 2.2.5). Studies are in progress to com-
bine magnetic models with field measurements into an overall field map for ATLAS data-taking
(section 2.2.6).

2.2.1 Performance specifications and measurement concepts

In the inner detector, the systematic error affecting the momentum measurement of charged tracks
is dominated by the relative alignment of detector components and by bending-power uncertain-
ties, the former being the more demanding. A high-precision measurement of the W -boson mass
is clearly the most challenging goal for such measurements: a lepton from W decay carries typi-
cally a transverse momentum of 40 GeV, resulting in a sagitta of approximately 1 mm as the lepton
traverses the ID cavity. The systematic alignment uncertainties in the ID are unlikely to improve
beyond the 1 µm level or 0.1% of the sagitta. This suggests setting a target of ∼ 5× 10−4 for
the fractional bending power uncertainty, so that it remains negligible in the determination of the
absolute momentum scale. Such stringent requirements can only be achieved reliably by in-situ
mapping, using dedicated instrumentation inside the ID cavity, with all the relevant magnetic ma-
terials in place and just before the final installation of the ID itself. Eventual long-term drifts of the
absolute scale will be detected to a much higher accuracy using permanently installed NMR probes.

In the muon spectrometer, the expected sagitta is approximately 0.5 mm for a muon with
a momentum of 1 TeV. The extraction of the momentum from the Monitored Drift Tube (MDT)
chamber measurements requires a precise knowledge of the field integral between consecutive
chambers along the muon trajectory. Because the field gradient can reach 1 mT/mm, local bending-
power uncertainties translate into fluctuations of the momentum scale from one region in space to
another, adding in quadrature to the overall momentum resolution. In addition, the interpretation,
in terms of spatial coordinates, of the drift time measured in the MDT’s is sensitive to the local
electric and magnetic fields experienced by the ionisation electrons in each tube. The corresponding
functional requirements are extensively discussed in [26] and summarised in table 2.2.

For a given muon trajectory, three sources of uncertainty affect the measured curvature: field
measurement errors; accuracy on the relative position of muon chambers and magnet coils; and
trajectory measurement errors, in particular along the direction of MDT wires. For the purpose
of setting specifications, it has been required (somewhat arbitrarily) that the combined effect of
these sources degrade the momentum resolution by no more than 5% in relative terms; each source
should then contribute no more than ∼3% of fractional resolution degradation, anywhere in the
spectrometer volume.
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Table 2.2: Summary of magnetic-field-related performance specifications in the muon spectrome-
ter. The quoted spread reflects the η−φ variations in field gradient and/or strength.

Criterion Bending-power accuracy MDT drift properties
Performance ∆σpT /σpT < 5% overall Single-wire resolution degraded by < 5%
Field measurement accuracy ∆Bφ /Bφ < 2 – 5 ×10−3 ∆Bx,y,z < 4 mT (relative over chamber)
Reconstructed position of toroid ∆R∼ 1 – 12 mm, R∆φ ∼ 1 – 6 mm, -
conductors with respect to MDT tower ∆z∼ 2 – 30 mm
Muon chamber 2nd-coordinate resolution 1.7–5.5 mm 6 to ∼ 100 mm

In-situ mapping of the spectrometer by conventional techniques would have been impractical
because of the rapidly-varying field and very large volume. Instead, the muon system is equipped
with a total of approximately 1840 B-field sensors; their readings are compared with magnetic
simulations and used for reconstructing the field in space. This strategy was shown [27] to meet the
field-map specifications above, provided the B-sensor readings, after correcting for perturbations
induced by magnetic materials, are accurate to∼ 1 mT (absolute) and the field direction is measured
to within ± 3 mrad.

2.2.2 B-field modelling

The total field in the ID cavity, the calorimeters, and the muon spectrometer is computed as the
superposition of the Biot-Savart contributions of all magnet windings (see figure 2.1) with those
of the magnetised calorimeter and with the localised perturbations induced by other ferromagnetic
structures. In order to reach the required accuracy, the calculation combines numerical integration
of the contributions of the solenoid, barrel-toroid and end-cap-toroid windings with finite-element
modelling of magnetic structures.

The solenoid conductor model is described in section 2.2.4. The magnetised steel (tile
calorimeter and solenoid flux-return girder), which surrounds the ID cavity, is predicted to modify
the field by 4.1% at the geometrical centre of the coil. At nominal current, the total measured field
is 1.998 T at the interaction point, and drops steeply from ∼ 1.8 T at z = 1.7 m to ∼ 0.9 T at the
end of the ID cavity (see figure 2.9).

The toroid windings are, at this stage, described using their nominal geometry. The mesh
density of the stored field map is tailored to the local field gradient to ensure an accurate represen-
tation of field variations (as also done for the solenoid). Depending on the radius R and azimuth φ ,
the field varies from 0.15 T to 2.5 T, with an average value of 0.5 T, in the barrel region, and
from 0.2 to 3.5 T in the end-cap region [28]. The analysing performance of the toroid system can
be roughly quantified by the field integral experienced by particles originating from the interaction
point and propagating in a straight line (the ultimate criterion is the momentum resolution: a zero
field integral does not necessarily imply infinite resolution). This available bending power is shown
in figure 2.10 as a function of |η |. It shows good magnetic field coverage up to |η | ∼ 2.6. The
regions with low field integral, between |η | = 1.4 and |η | = 1.6, correspond to trajectories in the
plane of an end-cap coil or of a barrel coil, where the fringe field of one magnet largely cancels the
bending power of the other.
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Figure 2.9: R- and z-dependence of the radial
(Br) and axial (Bz) magnetic field components
in the inner detector cavity, at fixed azimuth.
The symbols denote the measured axial and ra-
dial field components and the lines are the re-
sult of the fit described in section 2.2.4.

Figure 2.10: Predicted field integral as a func-
tion of |η | from the innermost to the outermost
MDT layer in one toroid octant, for infinite-
momentum muons. The curves correspond to
the azimuthal angles φ = 0 (red) and φ = π/8
(black).

A number of large magnetisable components, shown schematically in figure 2.11, distort
the Biot-Savart field at different levels. Although amenable to experimental spot-checks (sec-
tion 2.2.5), such perturbations can only be determined using field simulations.

The highly anisotropic structure of the tile calorimeter cannot be satisfactorily modelled us-
ing only a scalar permeability and an effective steel-packing factor: a formalism incorporating a
magnetic permeability tensor, as well as a more sophisticated treatment of magnetic discontinu-
ities at material boundaries, is called for. The problem is compounded by the superposition of the
solenoid and toroid fields in the partially-saturated flux-return girder and in the tile calorimeter it-
self. A novel approach to magnetic-field modelling in such structures has therefore been developed
and implemented in the B-field simulation package ATLM [29]. This package, which incorporates
a careful description of the toroid and solenoid conductors as well as a detailed mathematical model
of the tile calorimeter, is used both to compute the Biot-Savart field by numerical integration (as
described above), and to predict, by a finite-element method, the field distortions caused by the
tile calorimeter, the flux-return girder and the shielding disk in both the ID cavity and the muon
spectrometer. Altogether, these distortions affect the field integral in the muon spectrometer by up
to 4%, depending on |η | and φ ; in addition, they induce, at the level of the inner MDT layers, local
field distortions of up to |∆B| ∼ 0.2 T.

A few discrete magnetic structures, either inside the muon spectrometer or close to its outer
layers, induce additional, localised magnetic perturbations. Their impact has been evaluated using
the 3D finite-element magnetostatics package TOSCA [30]. The largest perturbations are caused
by the air pads, jacks and traction cylinders which allow the calorimeters, the shielding disks, and
the end-cap toroids to slide along the rails. These affect primarily the field distribution across
the innermost MDT chambers in the lowest barrel sectors (BIL and BIS in sectors 12 to 14, see
figures 2.11 and 6.1), and in addition impact the field integral at the level of up to 10% over small
islands in η−φ space.
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Figure 2.11: Sources of magnetic perturbations
induced by metallic structures in or near the
muon spectrometer.

Figure 2.12: Schematic representation of the
magnetic-sensor layout and coil deformation
model, used to reconstruct the magnetic field
inside a barrel octant. The MDT nomenclature
is defined in tables 6.3 and 6.4 (see section 6.3).

The field perturbations caused in the outside MDT layers by the massive steel frame and
platforms (HS structure described in section 9.5), which surround the detector, range from |∆B| ∼
2 mT up to ∼ 50 mT and rapidly decrease as one moves inwards from the outer to the middle
chamber layer. While their impact on B-sensor readings and MDT drift properties does need to be
taken into account, they barely affect the bending power, except possibly in a few narrow regions.

The other components in figure 2.11 have much less of an impact because either they lie in
a low-field region, they intercept a very small fraction of the end-cap muons, or they are made of
stainless steel with a high-field relative permeability very close to 1.

2.2.3 Magnetic field instrumentation and reconstruction

2.2.3.1 B-field sensors

The inner detector is equipped with four NMR probes fixed to the wall of the inner warm vessel
near z∼ 0 and equally spaced in azimuth. These probes measure the field strength with an accuracy
of around 0.01 mT and will remain in place to monitor the ID field strength throughout the lifetime
of ATLAS.
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Because NMR probes only measure |B| and because they cease functioning in a gradient of
a few tenths of mT/cm, the solenoid mapper, described in section 2.2.4, and the muon chambers
are equipped instead with 3D Hall cards [31, 32]. These consist of a rigid printed-circuit board
carrying a small glass cube, with a Hall probe on each of three orthogonal faces to measure each
field component. Every card includes its own readout electronics, as well as a thermistor for local
temperature compensation.

All the Hall cards were calibrated in a highly uniform field monitored by a NMR probe. The
achieved absolute Hall-card accuracy on |B| is 0.2 mT up to |B|= 1.4 T and 1 mT up to 2.5 T; and
the angular accuracy achieved on the measured field direction is 2 mrad.

2.2.3.2 B-field reconstruction

In an air-core magnet, the magnetic field can in principle be calculated by direct application of
the Biot-Savart law, once the geometry of all conductors is known and assuming material-induced
magnetic perturbations are negligible. In practice however, the conductor position and shape are
known only approximately, owing to fabrication tolerances and to deformations of the magnet
structure under gravitational and magnetic loads. The exact location of each magnet coil, as well
as the relative positions of the end-cap and barrel toroids, will be reproducible, after a power cycle
or an access period, to a finite precision only. Therefore, the field must be measured under running
conditions, with all detector components in place and under the mutual influence of the different
magnets and magnetic structures.

The muon spectrometer is equipped with an array of approximately 1730 Hall cards, which
remain mounted permanently and precisely on the MDT chambers and continuously measure all
three field components (an additional 64 cards are mounted on the inner and outermost faces of
the end-cap toroid cryostats to complement the MDT sensor system in the forward region). Two
NMR probes, installed at low-gradient locations in the barrel toroid, complement the system, with
the aim of detecting eventual long-term drifts in the response of the Hall cards. The 3-D sensor
readings are compared with field calculations which include both the contributions of the magnet
windings and those of nearby magnetised structures, and are used for reconstructing the position
and the shape of the toroid conductors with respect to the muon chambers (see figure 2.12). Once
the geometry of the coils is known, the field can be calculated anywhere in the muon spectrometer.
Simulation studies using a simplified coil deformation model have shown that the magnetic field
can be reconstructed to a relative accuracy of 0.2% [27].

2.2.4 Solenoid-mapping measurements

2.2.4.1 Mapping campaign

The field was mapped [33] in August 2006 by a machine, which scanned a Hall-card array over a
volume slightly larger than that now occupied by the inner detector. During this mapping campaign,
the barrel and end-cap calorimeters were all in their final positions. Although the shielding disks
were not yet installed, their differential contribution is small enough (< 0.2 mT in the ID tracking
volume) that it can be reliably accounted for later. The same is true of corrections for the absence
of toroid excitation during mapping.
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Mapping data were recorded with solenoid currents of 7730, 7850, 7000, and 5000 A, with
a final set of data back at the nominal operating current of 7730 A. Each data set contains at least
20,000 points, and is sufficient by itself to fit the field with negligible statistical uncertainty. Each
map took about four hours, during which the solenoid current remained stable to within 0.1 A, as
confirmed by the NMR probes.

2.2.4.2 Mapper geometry, survey and auto-calibration

The mapping machine had four arms mounted on a common axle in a windmill configuration, with
twelve Hall cards on each arm, at radii ranging from 0.118 to 1.058 m, which directly measured
the field components Bz, BR and Bφ . The machine could be rotated around its axle and translated
in z along the ID rails by means of pneumatic motors. Optical encoders allowed control of the
mapper movements and readout of its stop positions with an accuracy of 0.1 mm. A number of
surveys were necessary to determine the positions of each individual Hall sensor for all possible
longitudinal mapper positions and azimuthal settings of the windmill arms. After combining all the
information, the estimated overall accuracy on the position of a map point in the cryostat coordinate
system is approximately 0.3 mm.

The redundancy and internal consistency of the mapping measurements makes it possible to
extract individual probe misalignments from the data themselves to an accuracy of±0.1 mrad. The
strong constraints from Maxwell’s equations on physically realisable fields in the absence of any
current sources or magnetic materials, combined with the fact that the field at the origin can be
almost completely determined from the measurements of a single Hall probe, allow all three probe
alignment angles to be determined and the Bz component to be normalised to a common scale for
all probes.

The NMR probes, which were operational throughout the field-mapping campaigns, are used
to set the overall scale of the Hall sensors with an accuracy of about 0.4 mT, the limitation coming
from the extrapolation uncertainty from the mapper arms out to the position of the NMR probes.
The NMR data also show that there is negligible hysteresis in the solenoid system: the field at
7730 A remained constant within ±0.01 mT from the first excitation cycle onwards, provided that
this current was approached from below. A small saturation effect is visible in the NMR data, with
the field at 5000 A being 0.34 mT higher than would be expected by simply scaling down from
7730 A.

2.2.4.3 Map fitting

Using the measured magnet current and a detailed model of the solenoid geometry, the Biot-Savart
law is integrated to produce a field model which should account for most of the measured field.
The conductor model is based on engineering drawings, with as many parameters as possible taken
from surveys of the as-built solenoid. The coil cross-section is assumed to be perfectly circular. The
winding was mechanically assembled from four separate sections, each with a slightly different
average pitch, and joined together by welds which are represented electrically by turns having
just under twice the average pitch. Also modelled are the welds at the coil ends and the return
conductor which runs axially along the outside of the support cylinder. The expected distortion
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Table 2.3: Typical fit results of solenoid-mapping measurement at 7730 A.
Fitted parameters Fit results
Scale factors in conductor model (R scale, z scale) = 0.9993, 1.0012
Fitted offsets from solenoid centre to centre of cryostat (∆x,∆y,∆z) = 0.26, -2.42, 0.51 (mm)
Fitted rotations of solenoid around cryostat x and y axes (θx,θy) = -0.08, 0.19 (mrad)
Resulting fit residuals σ(∆Bz,∆BR, ∆Bφ ) = 0.44, 0.35, 0.30 (mT)

of the solenoid, relative to the room-temperature survey and caused by thermal shrinkage and
magnetic pressure, is also taken into account.

The geometrical fit to the mapping data has 11 free parameters. Two overall scale factors
allow fine tuning of the conductor model: one common to all longitudinal dimensions, and an
independent one for the radial dimension. Five more free parameters quantify the three offsets
and two rotations of the conductor relative to the mapper coordinate system. The calorimeter-steel
contribution is modelled by a Fourier-Bessel series with four terms. These parameters are deter-
mined by minimising a χ2 function which includes the longitudinal and radial field components
at all mapped points. The RMS residuals of the geometrical fit alone are just over 0.5 mT. This
field model is further improved by parametrising the difference between the data and the geomet-
rical model with a general series which can represent any field obeying Maxwell’s equations. This
brings the residuals down to about 0.4 mT, as shown in table 2.3.

Systematic uncertainties are estimated by fitting to several representative data sets under vary-
ing assumptions, with and without implementing various corrections (such as Hall-card alignment,
z-dependent carriage tilt, residual perturbations induced by slightly magnetic mapper components,
number of Fourier-Bessel terms etc.). The geometrical scale factors emerge as very close to unity
(table 2.3), suggesting that the coil survey data are well understood. The fitted offsets and rotations
with respect to the centre of the reference coordinate system (barrel LAr cryostat) are stable at
the 0.2 mm and 0.1 mrad level respectively, confirming the vertical -2 mm offset of the solenoid
axis indicated by the survey results before and after installation in the main cavern (see table 9.2
in section 9.3.2.3).

The overall fit is excellent, as illustrated in figure 2.9 and confirmed by the resulting RMS
residuals of∼ 0.4 mT for all three field components (table 2.3). The on-axis fractional steel contri-
bution, as estimated from the Fourier-Bessel series, is consistent with the magnetic-field simulation
to better than 2 mT, although the latter does not perfectly reproduce the measured z-dependence of
this perturbation. The fit quality is best measured in terms of the fractional sagitta residual, δS/S,
evaluated along an infinite-momentum trajectory from the interaction point to the point where the
track crosses the outer radial or longitudinal boundary of the inner detector. The total uncertainty,
estimated by combining the overall scale error, the fit residuals and the systematic uncertainties, is
shown as a function of |η | in figure 2.13.

2.2.5 Experimental validation of the field map in the muon spectrometer

The tests carried out in fall 2006 for the barrel toroid provided the first full-scale test of the B-
sensor system, and an initial validation of the magnetic models and field-reconstruction strategy in
the muon spectrometer. The end-cap toroids were not yet installed at the time and the solenoid was
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Figure 2.13: Fractional sagitta error due to un-
certainties in the solenoid field vs. |η |.

Figure 2.14: Field reconstruction residual ∆Bφ

for one middle (green, solid), outer (blue,
dashed) and inner (red, dot-dashed) MDT layer.

turned off. Since the muon-chamber installation was still in progress, only 400 MDT Hall cards
were available for readout, thus providing sensitivity for field reconstruction in about one third of
the barrel region.

The sensor signals were extremely clean (∼ 0.01 mT of RMS noise at full field), and repro-
ducible to ∼ 0.05 mT between magnet cycles separated by up to one week. Non-linear effects
remain very small (< 4 mT in the BIS layer, close to the calorimeter steel, over the full current
range). The absolute field scale, as determined by an NMR probe located in the azimuthal mid-
plane of coil 3, at a point where steel-induced perturbations are negligible and the field gradient
below 0.2 mT/cm, agrees with the Biot-Savart prediction to better than 0.2%.

The field reconstruction algorithm outlined in section 2.2.3 and detailed in [27] has been ap-
plied to B-sensor data collected at nominal field in the barrel toroid. Because the muon alignment
system was still being commissioned and the MDT survey not yet completed, it is necessary, at this
stage, to assume that all muon chambers and B-sensors are in their nominal position. For the three
coils bracketed by the available sensors, the reconstructed conductor shape is qualitatively consis-
tent with that measured at room temperature before insertion of the windings into their respective
cryostats. Figure 2.14 displays the difference, at each active sensor in sector 2 (see figure 6.1)
of the muon spectrometer, between the azimuthal component of the measured field (corrected for
perturbations from magnetic materials) and that of the Biot-Savart contribution predicted by the
field-reconstruction fit. A perfect description of the conductor geometry and of magnetic pertur-
bations should yield ∆Bφ = 0. The agreement is best in the middle chambers (BM), where the
gradients are smallest: the distribution is well centred and exhibits a spread ∆BRMS

φ
∼ 1.2 mT. In

the outer chamber layer (BOS), the distribution of ∆ Bφ shows a moderate bias of 2.2 mT and a
spread of 2.6 mT. In view of the larger field gradient in these chambers, such a spread is consistent
with the current ±5 mm uncertainty on the as-installed MDT chamber positions. The situation
is similar but somewhat worse in the inner chambers (BIS). These preliminary results reflect the
cumulative effect of errors in the assumed sensor and chamber geometry, of residual imperfections
in the magnetic model of the calorimeter steel, and of the performance of the reconstruction fit.

Validation of the TOSCA simulations, which describe the distortions induced by other sup-
port and service structures was carried out using 40 dedicated Hall cards temporarily installed at
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critical locations in the bottom muon sector and between the outer muon chambers and the HS
structure (see figure 2.11). The agreement between measured and predicted perturbations typically
ranges from 2 to 5 mT at the location of the Hall cards and should be better within the spectrometer
volume. It is satisfactory at most locations, although discrepancies as large as 50 mT are observed
very close to a few localised and well-identified steel supports. A more extensive magnetic charac-
terisation campaign is planned during the next full magnet-system test.

2.2.6 Towards an overall field map for ATLAS data-taking

The default field map in the ID tracking volume will mirror the very accurate fit obtained for the
solenoid mapping data and illustrated in figure 2.9. This approach automatically takes into account
the magnetised steel surrounding the ID cavity without having to rely on any field calculations.
The fit function is required to satisfy Maxwell’s equations and will include empirical corrections to
match the measured map as closely as possible, as well as small (< 0.2 mT) additional corrections
for the shielding disks (which were absent at the time of mapping) and barrel-toroid contributions.

In the calorimeters, the map will be based on the ATLM simulation, with the magnetic pa-
rameters describing the calorimeter steel adjusted to fit the solenoid-only and toroid-only field
measurements performed in 2006. This simulated map will be smoothly connected to the fitted
solenoid map in the future: the potential discontinuity remains to be characterised, but is estimated
not to exceed 2 mT over a very narrow interface region.

In the muon spectrometer, the map will reflect the superposition of the winding contributions
with the predicted distortions associated with the calorimeter steel and other significant magnetic
structures inside or near the spectrometer volume. So far, the Biot-Savart calculation presented
above has been performed only in a 1/16th slice, which spans 45◦ in azimuth and is longitudinally
symmetric with respect to the interaction point: this is the minimum angular size required to handle
correctly the symmetries of the full toroid system. Extending it to the case of an arbitrary geom-
etry (without any symmetry assumptions) is currently in progress and the final implementation
will depend on the extent to which the actual coil geometry, as eventually revealed by the field-
reconstruction procedure, deviates from the ideal configuration. Similarly, studies are in progress
to assess the magnetic impact of shape or position imperfections in the tile-calorimeter geometry:
their outcome will indicate to which extent such deviations from the ideal configuration must be
taken into account when describing the field inside the calorimeter and/or muon spectrometer.
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